Structural Requirements

• serviceability
 – strength
 – deflections
• efficiency
 – economy of materials
• construction
• cost
• other

Structure Requirements

• strength & equilibrium
 – safety
 – stresses not greater than strength
 – adequate foundation

Figure 1.16 Equilibrium and Stability?—sculpture by Richard Byer. Photo by author.
Structure Requirements

- economy and construction
 - minimum material
 - standard sized members
 - simple connections and details
 - maintenance
 - fabrication/erection

Design Procedure

- planning
- preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design

Design Procedure

- planning to establish
 - function of structure
 - criteria for optimum design
 - code jurisdiction
- preliminary structural configuration
 - arrangement of elements within form
 - columns
 - beams
 - joists
 - trusses

Design Procedure

- determination of loads
 - structure weight
 - moving loads
 - severe, rare loads
 - building codes
- preliminary member selection
 - based on configuration, determine loads on individual elements
 - determine internal forces & stresses
 - choose section to satisfy primary strength requirement
Design Procedure

• analysis
 – actual structure weight
 – with other loads
 – based on structural system / modeling
 • elements – columns, beams...
 • connections
 • systems – frames, trusses
 – deflections and deformations
 • different load combination?
 • pattern loading

• evaluation
 – measure results against criteria
 • strength?
 • deflections?
 • economy?

• revise design
 – any criteria NOT met
 – change member sizes, material, arrangement

Design Procedure

• final design
 – analyze revised design
 – evaluate and meets requirements
 – draw structural plan

Building Codes

• documentation
 – laws that deal with planning, design, construction, and use of buildings
 – regulate building construction for
 • fire, structural and health safety
 – cover all aspect of building design
 – references standards
 • acceptable minimum criteria
 • material & structural codes
Building Codes

• occupancy
• construction types
• structural chapters
 – loads, tests, foundations
• structural materials, assemblies
 – roofs
 – concrete
 – masonry
 – steel

<table>
<thead>
<tr>
<th>OCCUPANCY ON USE</th>
<th>UNIFORM</th>
<th>CONCENTRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Apartments (not residential)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Areas for systems</td>
<td>50</td>
<td>2,000</td>
</tr>
<tr>
<td>3. Administrative</td>
<td>100</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Building Codes

• adoptable codes
 – Southern Building Code Congress International (SBCCI)
 – Building Officials & Code Administrators International (BOCA)
 – International Conference of Building Officials (UBO)
 – International Building Code (IBC)
 • attempt to get one unified code in 2000

Code Reduction of Live Loads

• for (ordinary) live loads
 – factored area supported \(\geq 400 \text{ ft}^2 \)
 – reduction can’t exceed
 • \(0.5L_o \) (one floor) or \(0.4L_o \) (more)
 \[
 L = L_o \left(0.25 + \frac{15}{\sqrt{K_{1L}A_T}} \right)
 \]
• for live loads > 100 lb/ft\(^2\)
 – live load reduction of 20% on columns
• for (ordinary) roofs: \(L_r = L_o R_1 R_2 \)
 – 12 lb/ft\(^2\) \(\leq L_r \leq 20 \text{ lb/ft}^2 \)

Standards

• criteria for quality
 – American National Standards Institute (ANSI)
 – American Society of Testing and Materials (ASTM)
• materials
 – Brick Industry Association (BIA)
 – Portland Cement Association (PCA)
 – National Concrete Masonry Association (NCMA)
Structural Codes
- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function

Design
- factors out of the designer’s control
 - loads
 - occurrence
- factors within the designer’s control
 - “cost” of failure (F.S., probability, location)
 - economic design method
 - analysis method

Structural Codes
- American Concrete Institute (ACI)
- American Institute of Steel Construction (AISC)
- Precast/Prestressed Concrete Institute (PCI)
- Post Tensioning Institute (PTI)
- Structural Joist Institute (SJI)
- National Design Specifications (NDS)
 - National Forest Products Association

Design Methods
- different approaches to meeting strength/safety requirements
 - allowable stress design (elastic)
 - ultimate strength design
 - limit state design
 - plastic design
 - load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety
Design Methods

- structures and connections see
 - shear
 - bending
 - bearing
 - axial stress
 - compression
 - tension
 - torsion

Design Methods

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

Design Methods

- material behavior

Design Methods

- allowable stress design
 - elastic range
 - factor of safety (F.S.)
 \[f_{\text{actual}} = \frac{P}{A} \leq f_{\text{allowed}} = \frac{f_{\text{capacity}}}{F.S.} \]
 - probability of loads and resistance
 - material variability
 - overload, fracture, fatigue, failure
Design Methods

• **Load and resistance factor design (LRFD)**
 – beyond allowable stress
• **Materials aren’t uniform 100% of the time**
 – ultimate strength or capacity to failure may be different and some strengths hard to test for
• **Risk & Uncertainty**
 \[f_u = \frac{P_u}{A} \]

\[\gamma_D P_D + \gamma_L P_L \leq \phi P_n \]

\(\phi \) - Resistance factor
\(\gamma \) - Load factor for (D)ead & (L)ive load

Design Methods

• **Loads on structures are**
 – not constant
 – can be more influential on failure
 – happen more or less often
 – **Uncertainty**

Load Tracing

• **How loads are transferred**
 – usually starts at top
 – distributed by supports as actions
 – distributed by tributary areas

Loads

• **Gravity acts on mass** (\(F = m \times g \))
• **Force of mass**
 – acts at a point
 • *i.e.* joist on beam
 – acts along a “line”
 • *i.e.* floor on a beam
 – acts over an area
 • *i.e.* people, books, snow on roof or floor

Load Tracing

• **How loads are transferred**
 – usually starts at top
 – distributed by supports as actions
 – distributed by tributary areas
Load Tracing

• tributary load
 – think of water flow
 – “concentrates” load of area into center

\[w = \left(\frac{\text{load}}{\text{area}} \right) \times (\text{tributary width}) \]

Load Paths

• wall systems
Load Paths

• openings & pilasters

Figure 4.15 Arched over wall openings.
Figure 4.36 Load wall with a window opening.
Figure 4.17 Pilasters supporting concentrated loads.

Load Paths

• foundations

Figure 4.24 Spread footing.
Figure 4.25 Wall footing.
Figure 4.26 Mat or raft foundation.

Load Paths

• deep foundations

Figure 4.27 Pile foundations.
Figure 4.28 Pile cap on one pile group.
Figure 4.29 Grade beam supporting a bearing wall.

Load Types

• D = dead load
• L = live load
• L_r = live roof load
• W = wind load
• S = snow load
• E = earthquake load
• R = rainwater load or ice water load
• T = effect of material & temperature
• H = hydraulic loads from soil (F from fluids)
ASD Load Combinations

<table>
<thead>
<tr>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
</tr>
<tr>
<td>(D + L)</td>
</tr>
<tr>
<td>(D + (L_r \text{ or } S \text{ or } R))</td>
</tr>
<tr>
<td>(D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R))</td>
</tr>
<tr>
<td>(D + (0.6W \text{ or } 0.7E))</td>
</tr>
<tr>
<td>(D + 0.75L + 0.75(0.6W \text{ or } 0.7E) + (0.75L_r \text{ or } S \text{ or } R))</td>
</tr>
<tr>
<td>(0.6D + (0.6W \text{ or } 0.7E))</td>
</tr>
</tbody>
</table>

ASCE-7 (2010)

LRFD Load Combinations

<table>
<thead>
<tr>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.4D)</td>
</tr>
<tr>
<td>(1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R))</td>
</tr>
<tr>
<td>(1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W))</td>
</tr>
<tr>
<td>(1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R))</td>
</tr>
<tr>
<td>(1.2D + 1.0E + L + 0.2S)</td>
</tr>
<tr>
<td>(0.9D + 1.0W)</td>
</tr>
<tr>
<td>(0.9D + 1.0E)</td>
</tr>
</tbody>
</table>

Note:
- \(0.9D + 1.0E \) F has the same factor as D in 1-5 and 7
- \(H \) adds with 1.6 and resists with 0.9 (permanent)

ASCE-7 (2010)