design codes, building codes

Structure Requirements

- strength & equilibrium
 - safety
 - stresses not greater than strength
 - adequate foundation

- efficiency
 - economy of materials

- construction

- cost

- other

Structural Requirements

- serviceability
 - strength
 - deflections

- efficiency
 - economy of materials

- construction

- cost

- other
Structure Requirements

- economy and construction
 - minimum material
 - standard sized members
 - simple connections and details
 - maintenance
 - fabrication/erection

Design Procedure

- planning
- preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design

Design Procedure

- planning to establish
 - function of structure
 - criteria for optimum design
 - code jurisdiction
- preliminary structural configuration
 - arrangement of elements within form
 - columns
 - beams
 - joists
 - trusses

Design Procedure

- determination of loads
 - structure weight
 - moving loads
 - severe, rare loads
 - building codes

- preliminary member selection
 - based on configuration, determine loads on individual elements
 - determine internal forces & stresses
 - choose section to satisfy primary strength requirement
Design Procedure

- analysis
 - actual structure weight
 - with other loads
 - based on structural system / modeling
 • elements – columns, beams...
 • connections
 • systems – frames, trusses
 - deflections and deformations
 • different load combination?
 • pattern loading

Design Procedure

- evaluation
 - measure results against criteria
 • strength?
 • deflections?
 • economy?

- revise design
 - any criteria NOT met
 - change member sizes, material, arrangement

Design Procedure

- final design
 - analyze revised design
 - evaluate and meets requirements
 - draw structural plan

Building Codes

- documentation
 - laws that deal with planning, design, construction, and use of buildings
 - regulate building construction for
 • fire, structural and health safety
 - cover all aspect of building design
 - references standards
 • acceptable minimum criteria
 • material & structural codes
Building Codes

- **occupancy**
- **construction types**
- **structural chapters**
 - loads, tests, foundations
- **structural materials, assemblies**
 - roofs
 - concrete
 - masonry
 - steel

<table>
<thead>
<tr>
<th>Building Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design & Codes</td>
</tr>
<tr>
<td>Architectural Structures III</td>
</tr>
<tr>
<td>ARCH 631</td>
</tr>
<tr>
<td>F2008abn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupancy or Use</th>
<th>Uniform (psf)</th>
<th>Concentrated (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apartments (ten residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. Office</td>
<td>30</td>
<td>2,000</td>
</tr>
<tr>
<td>3. Apartment</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>4. Service and retail</td>
<td>150</td>
<td>—</td>
</tr>
</tbody>
</table>

- **adoptable codes**
 - Southern Building Code Congress International (SBCCI)
 - Building Officials & Code Administrators International (BOCA)
 - International Conference of Building Officials (UBO)
 - International Building Code (IBC)
 - attempt to get one unified code in 2000

Code Reduction of Live Loads

- **for (ordinary) live loads**
 - factored area supported ≥ 400 ft2
 - reduction can’t exceed
 - $0.5L_o$ (one floor) or $0.4L_o$ (more)
 - \[L = L_o \left(0.25 + \frac{15}{\sqrt{K_{ILL}A_T}} \right) \]

- **for live loads > 100 lb/ft2**
 - live load reduction of 20% on columns

- **for (ordinary) roofs:** $L_r = L_oR_1R_2$
 - 12 lb/ft$^2 \leq L_r \leq 20$ lb/ft2

Standards

- **criteria for quality**
 - American National Standards Institute (ANSI)
 - American Society of Testing and Materials (ASTM)

- **materials**
 - Brick Industry Association (BIA)
 - Portland Cement Association (PCA)
 - National Concrete Masonry Association (NCMA)
Structural Codes

- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function

Design

- factors out of the designer’s control
 - loads
 - occurrence
- factors within the designer’s control
 - choice of material
 - “cost” of failure (F.S., probability, location)
 - economic design method
 - analysis method

Structural Codes

- American Concrete Institute (ACI)
- American Institute of Steel Construction (AISC)
- Precast/Prestressed Concrete Institute (PCI)
- Post Tensioning Institute (PTI)
- Structural Joist Institute (SJI)
- National Design Specifications (NDS)
 - National Forest Products Association

Design Methods

- different approaches to meeting strength/safety requirements
 - allowable stress design (elastic)
 - ultimate strength design
 - limit state design
 - plastic design
 - load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety
Design Methods

- structures and connections see
 - shear
 - bending
 - bearing
 - axial stress
 - compression
 - tension
 - torsion

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

- material behavior

 ![Stress-strain diagram for mild steel (A36)](image)

 Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.

- allowable stress design
 - elastic range
 - factor of safety (F.S.)
 \[
 f_{\text{actual}} = \frac{P}{A} \leq f_{\text{allowed}} = \frac{f_{\text{capacity}}}{F.S.}
 \]
 - probability of loads and resistance
 - material variability
 - overload, fracture, fatigue, failure
Design Methods

- **load and resistance factor design (LRFD)**
 - beyond allowable stress
- **materials aren’t uniform 100% of the time**
 - ultimate strength or capacity to failure may be different and some strengths hard to test for
- **RISK & UNCERTAINTY**

 \[f_u = \frac{P_u}{A} \]

Loads

- gravity acts on mass \((F=m\times g)\)
- force of mass
 - acts at a point
 - ie. joist on beam
 - acts along a “line”
 - ie. floor on a beam
 - acts over an area
 - ie. people, books, snow on roof or floor

Design Methods

- **loads on structures are**
 - not constant
 - can be more influential on failure
 - happen more or less often
 - **UNCERTAINTY**

 \[\gamma_D P_D + \gamma_L P_L \leq \phi P_n \]

 \(\phi\) - Resistance factor
 \(\gamma\) - Load factor for (D)ead & (L)ive load

Load Tracing

- **how loads are transferred**
 - usually starts at top
 - distributed by supports as actions
 - distributed by **tributary areas**
Load Tracing

- tributary load
 - think of water flow
 - "concentrates" load of area into center

\[w = \left(\frac{\text{load}}{\text{area}} \right) \times (\text{tributary width}) \]

Load Tracing

Load Paths

- wall systems

Design & Codes 29
Lecture 3
Architectural Structures III
ARCH 631
F2008abn

Design & Codes 29
Lecture 3
Architectural Structures III
ARCH 631
F2008abn
Load Paths

- openings & pilasters

![Figure 4.15 Arching over wall openings.](image)
![Figure 4.16 Stair wall with a window opening.](image)
![Figure 4.17 Pilasters supporting concentrated loads.](image)

Load Paths

- foundations

![Figure 4.24 Spread footing.](image)
![Figure 4.25 Mat footing.](image)
![Figure 4.26 Mat or cap foundation.](image)

Load Paths

- deep foundations

![Figure 4.27 Pile foundations.](image)
![Figure 4.28 Pile cap on one pile group.](image)
![Figure 4.29 Grade beam supporting a bearing wall.](image)

Load Types

- D = dead load
- L = live load
- L_r = live roof load
- W = wind load
- S = snow load
- E = earthquake load
- R = rainwater load or ice water load
- T = effect of material & temperature
- H = hydraulic loads from soil (F from fluids)
ASD Load Combinations

<table>
<thead>
<tr>
<th>Combination</th>
<th>ASCE-7 (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>$D + L$</td>
<td></td>
</tr>
<tr>
<td>$D + (L_r \text{ or } S \text{ or } R)$</td>
<td></td>
</tr>
<tr>
<td>$D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$</td>
<td></td>
</tr>
<tr>
<td>$D + (0.6W \text{ or } 0.7E)$</td>
<td></td>
</tr>
<tr>
<td>$D + 0.75L + 0.75(0.6W \text{ or } 0.7E) + (0.75L_r \text{ or } S \text{ or } R)$</td>
<td></td>
</tr>
<tr>
<td>$0.6D + (0.6W \text{ or } 0.7E)$</td>
<td></td>
</tr>
</tbody>
</table>

LRFD Load Combinations

<table>
<thead>
<tr>
<th>Combination</th>
<th>ASCE-7 (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.4D$</td>
<td></td>
</tr>
<tr>
<td>$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$</td>
<td></td>
</tr>
<tr>
<td>$1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$</td>
<td></td>
</tr>
<tr>
<td>$1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$</td>
<td></td>
</tr>
<tr>
<td>$1.2D + 1.0E + L + 0.2S$</td>
<td></td>
</tr>
<tr>
<td>$0.9D + 1.0W$</td>
<td></td>
</tr>
<tr>
<td>$0.9D + 1.0E$</td>
<td></td>
</tr>
<tr>
<td>$0.9D + 1.0E$</td>
<td></td>
</tr>
<tr>
<td>$0.9D + 1.0E \text{ F has same factor as } D \text{ in 1-5 and 7}$</td>
<td></td>
</tr>
<tr>
<td>$H \text{ adds with 1.6 and resists with 0.9 (permanent)}$</td>
<td></td>
</tr>
</tbody>
</table>