design codes, building codes

Structure Requirements

- strength & equilibrium
 - safety
 - stresses not greater than strength
 - adequate foundation

Structural Requirements

- serviceability
 - strength
 - deflections
- efficiency
 - economy of materials
- construction
- cost
- other

Figure 1.16 Equilibrium and Stability?—sculpture by Richard Eyer. Photo by author.

Figure 1.15 Stability and the strength of a structure—the collapse of a portion of the UW Husky stadium during construction (1987) due to a lack of adequate bracing to ensure stability. Photo by author.
Structure Requirements

- economy and construction
 - minimum material
 - standard sized members
 - simple connections and details
 - maintenance
 - fabrication/erection

Design Procedure

- planning to establish
 - function of structure
 - criteria for optimum design
 - code jurisdiction

- preliminary structural configuration
 - arrangement of elements within form
 - columns
 - beams
 - joists
 - trusses

Design Procedure

- planning
- preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design

Design Procedure

- determination of loads
 - structure weight
 - moving loads
 - severe, rare loads

- preliminary member selection
 - based on configuration, determine loads on individual elements
 - determine internal forces & stresses
 - choose section to satisfy primary strength requirement
Design Procedure

• analysis
 – actual structure weight
 – with other loads
 – based on structural system / modeling
 • elements – columns, beams...
 • connections
 • systems – frames, trusses
 – deflections and deformations
 • different load combination?
 • pattern loading

Design Procedure

• evaluation
 – measure results against criteria
 • strength?
 • deflections?
 • economy?
• revise design
 – any criteria NOT met
 – change member sizes, material, arrangement

Design Procedure

• final design
 – analyze revised design
 – evaluate and meets requirements
 – draw structural plan

Building Codes

• documentation
 – laws that deal with planning, design, construction, and use of buildings
 – regulate building construction for
 • fire, structural and health safety
 – cover all aspect of building design
 – references standards
 • acceptable minimum criteria
 • material & structural codes
Building Codes

- occupancy
- construction types
- structural chapters
 - loads, tests, foundations
- structural materials, assemblies
 - roofs
 - concrete
 - masonry
 - steel

Building Codes

- adoptable codes
 - Southern Building Code Congress International (SBCCI)
 - Building Officials & Code Administrators International (BOCA)
 - International Conference of Building Officials (ICBO - UBC)
 - International Building Code (IBC)
 - attempt to get one unified code in 2000

Code Reduction of Live Loads

- for (ordinary) live loads
 - factored area supported $\geq 400 \text{ ft}^2$
 - reduction can’t exceed
 - $0.5L_o$ (one floor) or $0.4L_o$ (more)
 \[
 L = L_o \left(0.25 + \frac{15}{\sqrt{K_{LL}A_T}}\right)
 \]
- for live loads $> 100 \text{ lb/ft}^2$
 - live load reduction of 20% on columns
- for (ordinary) roofs: $L_r = L_o R_1 R_2$
 - $12 \text{ lb/ft}^2 \leq L_r \leq 20 \text{ lb/ft}^2$

Standards

- criteria for quality
 - American National Standards Institute (ANSI)
 - American Society of Testing and Materials (ASTM)
- materials
 - Brick Industry Association (BIA)
 - Portland Cement Association (PCA)
 - National Concrete Masonry Association (NCMA)
Structural Codes

- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function

Design

- factors out of the designer’s control
 - loads
 - occurrence
- factors within the designer’s control
 - choice of material
 - “cost” of failure (F.S., probability, location)
 - economic design method
 - analysis method

Structural Codes

- American Concrete Institute (ACI)
- American Institute of Steel Construction (AISC)
- Precast/Prestressed Concrete Institute (PCI)
- Post Tensioning Institute (PTI)
- Structural Joist Institute (SJI)
- National Design Specifications (NDS)
 – American Wood Council

Design Methods

- different approaches to meeting strength/safety requirements
 – allowable stress design (elastic)
 – ultimate strength design
 – limit state design
 – plastic design
 – load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety
Design Methods

- structures and connections see
 - shear
 - bending
 - bearing
 - axial stress
 - compression
 - tension
 - torsion

Design Methods

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

Design Methods

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

Design Methods

- material behavior

Design Methods

- allowable stress design
 - elastic range
 - factor of safety (F.S.)
 \[f_{\text{actual}} = \frac{P}{A} \leq f_{\text{allowed}} = \frac{f_{\text{capacity}}}{\text{F.S.}} \]
 - probability of loads and resistance
 - material variability
 - overload, fracture, fatigue, failure
Design Methods

- load and resistance factor design (LRFD)
 - beyond allowable stress
- materials aren’t uniform 100% of the time
 - ultimate strength or capacity to failure may be different and some strengths hard to test for
- RISK & UNCERTAINTY

\[f_u = \frac{P_u}{A} \]

Design Methods

- loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
- UNCERTAINTY

\[\gamma_D P_D + \gamma_L P_L \leq \phi P_n \]

\(\phi \) - Resistance factor
\(\gamma \) - Load factor for (D)ead & (L)ive load

Loads

- gravity acts on mass (F=m*\(g\))
- force of mass
 - acts at a point
 - ie. joist on beam
 - acts along a “line”
 - ie. floor on a beam
 - acts over an area
 - ie. people, books, snow on roof or floor

Load Tracing

- how loads are transferred
 - usually starts at top
 - distributed by supports as actions
 - distributed by tributary areas
Load Tracing

- tributary load
 - think of water flow
 - “concentrates” load of area into center

\[w = \left(\frac{\text{load}}{\text{area}} \right) \times (\text{tributary width}) \]

Load Tracing

Load Paths

- wall systems
Load Paths

- openings & pilasters

 ![Image](image1.png)
 ![Image](image2.png)
 ![Image](image3.png)

Load Paths

- foundations

 ![Image](image4.png)
 ![Image](image5.png)
 ![Image](image6.png)

Load Paths

- deep foundations

 ![Image](image7.png)
 ![Image](image8.png)
 ![Image](image9.png)

Load Types

- $D =$ dead load
- $L =$ live load
- $L_r =$ live roof load
- $W =$ wind load
- $S =$ snow load
- $E =$ earthquake load
- $R =$ rainwater load or ice water load
- $T =$ effect of material & temperature
- $H =$ hydraulic loads from soil (F from fluids)
ASD Load Combinations

<table>
<thead>
<tr>
<th>Description</th>
<th>ASCE-7 (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D + L</td>
<td></td>
</tr>
<tr>
<td>D + (L_r or S or R)</td>
<td></td>
</tr>
<tr>
<td>D + 0.75L + 0.75(L_r or S or R)</td>
<td></td>
</tr>
<tr>
<td>D + (0.6W or 0.7E)</td>
<td></td>
</tr>
<tr>
<td>D + 0.75L + 0.75(0.6W or 0.7E) + (0.75L_r or S or R)</td>
<td></td>
</tr>
<tr>
<td>0.6D + (0.6W or 0.7E)</td>
<td></td>
</tr>
</tbody>
</table>

LRFD Load Combinations

<table>
<thead>
<tr>
<th>Description</th>
<th>ASCE-7 (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4D</td>
<td></td>
</tr>
<tr>
<td>1.2D + 1.6L + 0.5(L_r or S or R)</td>
<td></td>
</tr>
<tr>
<td>1.2D + 1.6(L_r or S or R) + (L or 0.5W)</td>
<td></td>
</tr>
<tr>
<td>1.2D + 1.0W + L + 0.5(L_r or S or R)</td>
<td></td>
</tr>
<tr>
<td>1.2D + 1.0E + L + 0.2S</td>
<td></td>
</tr>
<tr>
<td>0.9D + 1.0W</td>
<td></td>
</tr>
<tr>
<td>0.9D + 1.0E</td>
<td></td>
</tr>
</tbody>
</table>

- 0.9D + 1.0E F has same factor as D in 1-5 and 7
- H adds with 1.6 and resists with 0.9 (permanent)