Cables
• simple
• uses
 – suspension bridges
 – roof structures
 – transmission lines
 – guy wires, etc.
• have same tension all along
• can’t stand compression – struts do

Cables
• use high-strength steel
• need
 – towers
 – anchors
 – stiffeners (hangers)
• have spans & sag
• don’t want movement
 – dynamic effects of wind
 – resonance
Cables

• equilibrium:
 – not enough to solve, we have slopes
 – X component the same everywhere

Cable Loads

• straight line between forces

Cable Loads

• shape directly related to the distributed load

Cable Loads

• trig:
 \[T_x = T \cos \theta \]
 \[T_y = T \sin \theta \]

• parabolic (catenary)
 – distributed uniform load
 \[
 y = 4h(Lx - x^2) / L^2
 \]
 \[
 L_{total} = L(1 + \frac{8}{3}h^2/L^2 - \frac{32}{75}h^4/L^4)
 \]
Cables & Tension Elements

- typical cross sections

 - Round bar
 - Flat bar
 - Angle
 - Double angle
 - Channel
 - Double channel
 - Laminated channels
 - H section (wax-open)
 - S section (American Standard)
 - Multi-wire strand

Cable Structures

- categories
 - single drape
 - double
 - different curvature
 - same plane or different

- cases
 - Brooklyn Bridge
 - Dulles Terminal

Brooklyn Bridge, Roebling 1883
Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- cases
 - Patcenter
 - Alamillo Bridge

Patcenter, Rogers 1986
Patcenter, Rogers 1986

- dashes – cables pulling

![Patcenter, Rogers 1986](image)

Figure 3.5: Patcenter, load path diagram.

Alamillo Bridge, Calatrava 1992

- concrete “mast”
- parallel cable stays
- steel box beam spine in deck

![Alamillo Bridge, Calatrava 1992](image)

Figure 3.12: Alamillo bridge, load path diagram.
Tensegrities

- 3D frame
- discontinuous struts
- continuous cables

Olympic Gymnastics Stadium

- Geiger 1988

Olympic Gymnastics Stadium

- Geiger 1988

Florida Suncoast Dome, HOK 1989
Florida Suncoast Dome, HOK 1989

![Diagram of Florida Suncoast Dome](image1)

Figure 5.22: Florida Suncoast Dome, section.

Georgia Dome, Stainback 1992

![Image of Georgia Dome](image2)

Figure 5.24: Georgia Dome, isometric drawing of cable and strut configuration.

Arches

- **curvilinear form**
 - efficient in compression
 - minimal bending stress

![Diagram of Arches](image3)
Arches

• ancient
 – stone
 – masonry

Rainbow Bridge National Monument

Packhorse Bridge, UK

Arches

• terminology
 – arch axis
 – crown
 – rise
 – extrados
 – intrados
 – depth
 – spring line
 – span
 – skewback
 – soffit

Arch terminology

Arches

• behavior
 – stabilization
 – resist thrust

• materials
 – stone
 – masonry
 – concrete
 – laminated wood
 – steel

Free-standing arch (stable due to width of vossoirs)

Arch stabilized by surrounding masonry wall (also makes carrying moving loads feasible)
Arches

• behavior
 – thrust related to height to width

Arches

• common forms
 – Arch in Compression
 – Parabolic Arch
 – Semicircular Arch

Arches

• common variations
 – two hinged
 – three hinged – statically determinate

Arches

• requires lateral bracing
 – lateral ties
 – diagonal ties
Arches

- ... bracing
 - lamellas

(d) Lamella (diagonal)
truss barrel vault

Vaults

- Crypt of the Colonia Güell - Gaudi

Domes

- arch of revolutionary design
- resists
 compressive
 forces
Domes

• materials & forms
 – concrete
 – masonry
 – steel

• stresses and displacements

Domes

• materials & forms
 – concrete
 – masonry
 – steel

Domes

• Palazzetto dello Sport -Nervi