Plates, Slabs & Grids

• plates – horizontal plane, rigid
• slabs – thin, flat, rigid
 – extremely common in concrete
• grids – crossed beams
• see
 – bending
 – shear

Plates, Slabs & Grids

• types & spanning direction
Plates, Slabs & Grids

- loads & behavior
 - comparison with beams

Plates, Slabs & Grids

- compatibility
 - deflections same, even with stiffer side
 - stiffness $\propto \frac{EI}{L}$
 - twisting causes torsional stresses

Plates, Slabs & Grids

- supports
 - at points
 - flexible
 - continuous
One-Way Plates

- with uniform loads
 - like “wide” beams
 - moment / unit width
 - uniform curvature
- with point loads
 - resisted by stiffness of adjacent strips
 - more curvature in middle

Moment Redistribution

- total moment for ½ plate
 - value from basic equilibrium
 - because of curvature, it isn’t uniform at support
 - redistribution
 - bigger with big curvature
 - smaller with small curvature

Moment Redistribution

- continuous slabs & beams with uniform loading
 - joints similar to fixed ends, but can rotate
- change in moment to center = \(\frac{wL^2}{8} \)
 - \(M_{\text{max}} \) for simply supported beam
Moment Distribution Method (b)

- add load

Moment Distribution Method (c)

- release joint 2

Moment Distribution Method (d)

- release joint 3

Moment Distribution Method (e)

- exposure of final shape after cycles over initial shape
Ribbed Plates

• typical in reinforced concrete
• pans can be standard or wide

Ribbed Plates

• design them as T-beams
 – flange compression
 – stem compression
• “effective” flange width

Plate Structures

• slabs & columns
Two-Way Plates

- **support conditions**
 - columns
 - flexible (beams)
 - simple
 - continuous

Two-Way Plates

- **supported by columns**
 - M_{max} at midspan of edges

Two-Way Plates

- **simply supported**
 - maximum curvature at midpoint of plate

Two-Way Plates

- **beam vs. wall supports**
 - stiffer supports, thinner slab
Two-Way Plates

- **bay proportions**
 - shorter side has bigger \(\frac{EI}{L} \)
 - ratio of longer side to shorter side > 1.5
 - acts like one-way plate

Two-Way Plates

- **moments found from tables or handbook solutions**
 - depend on support conditions

\[
\begin{array}{|c|c|c|}
\hline
\text{Ratio} & \text{Simply supported on all four sides} & \text{Fixed edges on all four sides} \\
\hline
a/b & C_a & C_b \\
\hline
1.0 & +0.0479 & +0.0479 \\
2.0 & +0.1116 & +0.1017 \\
\hline
\end{array}
\]

Design Considerations

- minimize bending (& depth)
- support conditions effective
 - continuous edge support preferred
 - fixed more than simple
- continuous surface
Design Considerations (cont’d)

• overhangs reverse curvature
• bay proportions
 – < 1:1.5
• load type
 – surface or point
• span range
 – rigid plates: 15’-60’

Reinforced Concrete Design

• economical & common
• resist lateral loads

Reinforced Concrete Design

• flat plate
 – 5”-10” thick
 – simple formwork
 – lower story heights

• flat slab
 – same as plate
 – 2 ¼” – 8” drop panels

• two-way joist
 – “waffle slab”
 – 3”-5” slab
 – 8”-24” stems
 – 6”-8” webs

• beam supported slab
 – 5”-10” slabs
 – taller story heights
Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams
- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w_u from combos
 - uniform loads with $L/D \leq 3$
 - ℓ_n is clear span ($+M$) or average of adjacent clear spans ($-M$)

- two-way slabs - Direct Design Method
 - 3 or more spans each way
 - uniform loads with $L/D \leq 3$
 - rectangular panels with long/short span ≤ 2
 - successive spans can’t differ $> \text{longer}/3$
 - column offset no more than 10% span
Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Shear in Concrete

- critical section at d/2 from
 - column face, column capital or drop panel

Shear in Concrete

- at columns with waffle slabs
Openings in Slabs
- careful placement of holes
- shear strength reduced
- bending & deflection can increase

Space “Frame” Behavior
- handle uniformly distributed loads well
- bending moment
 - tension & compression “couple” with depth
 - member sizes can vary, but difficult

Space “Frame” Behavior
- shear at columns
- support conditions still important
 - point supports not optimal
- fabrication/construction can dominate design

Folded Plates
- increased bending stiffness with folding
- lateral buckling avoided
Folded Plates

- common for roofs
- edges need stiffening

Folded Plates

- State Farm Center, (Assembly Hall) University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

http://nisee.berkeley.edu/godden

www.library.illinois.edu