Keiller Building
Laboratory Building
University of Texas – Medical Branch
Galveston, Texas

Team “That’s What She Said”
Paul Gregg – Ann Frankovich – Julie Krebs – Leslie Leffke – Adam Panter
Background

- History

- Constructed in 1925 as the Laboratory Building for the University of Texas Medical Branch – Galveston, TX
 - Architect –
 - Herbert Miller Greene, Univ. of Texas campus architect, 1922-1932
 - Mediterranean-influenced Beaux-Arts style
 - Expanded in 1932, renovated in 1995, currently undergoing structural alterations.
Construction

- Massing

- Primary system is load bearing masonry consisting of 1’ clay tile masonry units with limestone and brick veneer (non load-bearing)
- No expansion joints
- Renovation/ new construction uses more cast-in-place reinforced concrete, but the overall building system is still primarily load bearing clay masonry.
Construction

- Soil conditions

- Deep Sandy Eolian Sands of Holocene age
- Cohesionless
- Building should be built upon piers or piles in order to create stability.
Construction
- Foundation
Construction

- Foundation

![Diagram of construction foundation](image)
Construction

- Flooring

- Floor slabs are a one-way concrete joist system in most areas. Slabs are 5” thick, joists are 1’ deep and spaced 3’ on center.
- Some of the longer slab areas have tertiary members to reinforce the system. Visually the slabs become a two way system, but the bay proportions exceed the maximum aspect ratio, making them one-way.
Construction

- Roof system
 - Roof trusses are formed of welded steel members.
 - Composed of two steel angels with a gusset plate connections.
 - Rigid joints.
 - Truss welded to plate cast in masonry wall.
All interior columns composed of reinforced concrete.

<table>
<thead>
<tr>
<th>MARK</th>
<th>SIZE</th>
<th>VERT. STEEL</th>
<th>TIES</th>
<th>DOWELS</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>20 x 20</td>
<td>8, #7</td>
<td>#3 @ 14</td>
<td>8, #7 x 4'-0"</td>
<td>S818</td>
</tr>
<tr>
<td>C5</td>
<td>14 x 14</td>
<td>4, #7</td>
<td>#3 @ 14</td>
<td>4, #7 x 4'-0"</td>
<td>S818</td>
</tr>
<tr>
<td>C6</td>
<td>14 x 14</td>
<td>4, #7</td>
<td>#3 @ 14</td>
<td>4, #7 x 4'-0"</td>
<td>S818</td>
</tr>
<tr>
<td>C7</td>
<td>14 x 14</td>
<td>4, #7</td>
<td>#3 @ 14</td>
<td>4, #7 x 4'-0"</td>
<td>S818</td>
</tr>
<tr>
<td>C8</td>
<td>14 x 14</td>
<td>4, #7</td>
<td>#3 @ 14</td>
<td>4, #7 x 4'-0"</td>
<td>S818</td>
</tr>
<tr>
<td>C9</td>
<td>20 x 20</td>
<td>8, #7</td>
<td>#3 @ 14</td>
<td>8, #7 x 4'-0"</td>
<td>S818</td>
</tr>
<tr>
<td>C10</td>
<td>20 x 20</td>
<td>8, #7</td>
<td>#3 @ 14</td>
<td>8, #7 x 4'-0"</td>
<td>S818</td>
</tr>
<tr>
<td>C11</td>
<td>20 x 20</td>
<td>8, #7</td>
<td>#3 @ 14</td>
<td>8, #7 x 4'-0"</td>
<td>S818</td>
</tr>
</tbody>
</table>

NOTE: COLUMNS EXTEND BETWEEN 3RD AND 4TH FLOORS
Construction

- Supports

<table>
<thead>
<tr>
<th>Buckled shape of column shown by dashed line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical K value</td>
</tr>
<tr>
<td>Recommended design values when ideal conditions are approximated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K value</td>
<td>0.5</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Recommend design values</td>
<td>0.65</td>
<td>0.80</td>
<td>1.0</td>
<td>1.2</td>
<td>2.10</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Can you say plan irregularity??
Construction

- Loads

THE TWO-MINUTE ENGINEER

FORCES

- Lateral load: Forces applied parallel to level ground surface (wind, seismic, backfill, etc.).
- Uplift: Forces applied perpendicular to level ground surface, in an upward direction (wind uplift and vertical seismic forces).

REACTION

- Base shear: The reaction at the base of a wall or structure due to an applied lateral load - “Sidings Force.”
- Overturning: What happens when a lateral force acts on a wall or structure and it can’t slide - “Trip Over Force.”

Wind Speed (mph)

![Wind Speed Graph]

- City
- US average

![Graph showing wind speed variations by month.](image-url)
Construction

- Loads
 - Force Diagram
Construction

- Loads
 - Moment Diagram
Construction

- Loads
 - Shear Diagram
Construction

- Loads

 - Load Resisting Factors
 - The building functions as shear walls connected by a rigid diaphragm
 - Resists the overturning moment, resists torsion due to building length
 - Basically, the building functions as a monolithic structure.
Sources

4. http://www.utexas.edu/supportut/news_pub/yg_greeneexhibit.html&hl=en&w=378&sz=20&hl=en&start=4&tbnid=gJ22_sAs5coShM:&tbnh=122&tbnw=85&prev=/images%3Fq%3DGREENE,%2BHERBERT%2BMILLER%26svnum%3D10%26hl%3Den%26rls%3DDKUS,DKUS:2006-29,DKUS:en