Grids and Patterns

- often adopted early in design
 - give order
 - cellular, ex.
- vertical and horizontal
- square and rectangular
 - single-cell
 - aggregated bays

Structural Design Sequences

- first-order design
 - structural type and organization
 - design intent
 - contextual or programmatic
- second-order
 - structural strategies
 - material choice
 - structural systems
- third-order
 - member shaping & sizing

Grids and Patterns

- often adopted early in design
 - give order
 - cellular, ex.
- vertical and horizontal
- square and rectangular
 - single-cell
 - aggregated bays
Systems

- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced

One-Way Systems

- horizontal vs. vertical

Two-Way Systems

- spanning system less obvious
- horizontal
 - plates
 - slabs
 - space frames
- vertical
 - columns
 - walls
Roof Shapes
- coincide
- within

Systems & Spans
- crucial in selection of system
- maximum spans on charts aren’t absolute limits, but usual maximums
 - increase L, increase d^2 required (ex. cantilever)
 - deflections depend on L

Span Lengths

$W = \frac{f_{b_{-max}} \cdot W L}{(bd)^{2/6}}$
Moments in Members

<table>
<thead>
<tr>
<th>Structure</th>
<th>Basic Moment-carrying Mechanism</th>
<th>Free-body Diagrams with Respect to Rotational Forces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truss</td>
<td>![Truss Diagram]</td>
<td>![Rotational Forces Diagram]</td>
</tr>
<tr>
<td>Cable</td>
<td>![Cable Diagram]</td>
<td>![Rotational Forces Diagram]</td>
</tr>
<tr>
<td>Beam</td>
<td>![Beam Diagram]</td>
<td>![Rotational Forces Diagram]</td>
</tr>
</tbody>
</table>

Spans

- **long-span structures**
 - over 60’ or 20 m
 - depths are large compared to span
 - usually shaped
 - trusses, arches, cables, nets, pneumatics & shells
 - common for roofs
 - camber
 - flat systems not as efficient
 - deflections can govern size

- **intermediate- and low-span systems**
 - 15’ – 40’ or 5 – 15 m
 - more common
 - good for planar surfaces
 - lots of options
 - cost usually dictates

Loading Type and Structure Type

- **light uniform loads**
 - surface forming elements
 - those that pick up first load dictate spacing of other elements

- **heavy concentrated loads**
 - member design unique

- **distributed vs. concentrated structural strategies**
 - large beam vs. many smaller ones
Case

• grid
• system orientation
 – one-way or two?
• span lengths
• loading type
 – concentrated vs. distributed
Case

- span lengths
 - 30-40 m (100 - 130 ft)
 - 15-20 m (50 – 65 ft)

Case

- pre-stressing & loading type

Design Issues

- critical programmatic dimensions
 - minimum clear spans for functional areas
 - determines selection of beam, or roof/ floor systems
 - vertical support elements
 - match clear span or greater
Design Issues

• degree of fit
 – single (1:1)
 – multiple (2:1, etc.)
 – any number of patterns possible
 – simple patterns generally more “elegant”

• one-on-one fit
 – good for large spans
 – material selection influences short span fit
 • steel & concrete for “looser” fits

Foundation Influence

• type may dictate fit
 – piles vs. mats vs. spread
 – capacity of soil to sustain loads
 • high capacity – smaller area of bearing needing and can spread out
 • low capacity – multiple contacts and big distribution areas

Spatial Implications

• one-directional or linear space
 – load bearing walls
 – beams & columns
 • column shape & orientation
 – long spans

• two-way, relatively neutral space
 – flat plate
 – beams & slabs
 – space frames

Square Bays

• two-way systems rely on square-ness
 – peripheral wall system or columns
 – columns extending 2 ways common
 – for low & intermediate span ranges

• one-way systems can be used
 – don’t have 4 walls
 – columns extending 1 way only
Rectangular Bays

• 1:1 to 1:1.5
• direction of joists & beams not obvious
 – run comparison for material amounts
• generally:
 – with no collectors, span the short way
 • lightweight joists or trusses
 – with collectors, try the short way
 • same tributary load over shorter span

Corners

– terminate system & change
– transition, rotation, or two-way system
– depends on vertical elements
– prefer constant member sizes AND spacings with steel & wood
– can use cast-in-place concrete

Slipped Units

• usually one-way systems
• bearing walls allow unlimited slip
• columns allow slip by
 – column to column distance
 – columns can shift

Moving Supports

• location of supports can redistributed the moments
 – reduced section size
• using cantilevers & continuous beams
 – rule of thumb for simple supported beam
 • move L/5 in both ends
 • move L/3 one end
Non-Uniform Grids

• irregular column placement
 – concrete & flat slabs adaptable
• regular vertical supports required for most long span systems

Grid Dependency on Floor Height

• wide grid = deep beams
 – increased building height
 – heavier
 – foundation design
• codes and zoning may limit
• utilize depth for mechanical

Large Spaces

• ex. auditoriums, gyms, ballrooms
• choices
 – separate two systems completely and connect along edges
 – embed in finer grid
 • high up, less load transfer
 • low – more load transfer & heavy girders
 – staggered truss

Meeting of Grids

• common to use more than one grid
• intersection important structurally
• can use different structural materials
 – need to understand their properties
 • mechanical
 • thermal
Meeting of Grids

- horizontal choices

- vertical choices

Other Conditions

- circulation
- building service systems
 - one-way systems have space for parallel runs
 - trusses allow for transverse penetration
 - pass beneath or interstitial floors
 - for complex or extensive services or flexibility

- poking holes for member services
 - horizontal
 - need to consider area removed, where removed, and importance to shear or bending
 - vertical
 - requires framing at edges
 - can cluster openings to eliminate a bay
 - double systems
Fire Safety & Structures

• fire safety requirements can impact structural selection

• construction types
 – light
 • residential
 • wood-frame or unprotected metal
 – medium
 • masonry
 – heavy
 • protected steel or reinforced concrete

Fire Safety & Structures

• degree of occupancy hazards
• building heights
• maximum floor areas between fire wall divisions
 – can impact load bearing wall location

Fire Safety & Structures

• resistance ratings by failure type
 – transmission failure
 • fire or gasses move
 – structural failure
 • high temperatures reduce strength
 – failure when subjected to water spray
 • necessary strength

• ratings do not pertain to usefulness of structure after a fire