Lateral Load Resistance

- stability important for any height
- basic mechanisms
 - shear walls
 - diaphragms
 - diagonal bracing
 - frame action
- resist any direction laterally without excessive movement

Load Direction

- layout

Lateral Load Resistance

- deformations
- load transfer & in-plane forces
Rectangular Buildings

- short side (in red)
 - needs to resist most wind
 - bigger surface area
 - shear walls common
- long side
 - other mechanisms
- long & low
 - may only need end bracing
- symmetry important
 - avoid distortions, ex. twisting

Shear Walls

- resist lateral load in plane with wall

Shear Walls

- lateral resistance

Lateral Load Design 5
Lecture 14
Architectural Structures III
ARCH 631
F2007abn

Shear Walls

- masonry
- concrete

Lateral Load Design 6
Lecture 14
Architectural Structures III
ARCH 631
F2007abn

Lateral Load Design 7
Lecture 14
Architectural Structures III
ARCH 631
F2007abn

Lateral Load Design 8
Lecture 15
Architectural Structures III
ARCH 631
F2009abn

http://nisee.berkeley.edu/godden
Shear Walls

- timber
 - wall studs with sheathing
 - vertical trusses

Shear Walls

- steel

Shear Walls

- insulated concrete forms (ICF)

Diaphragms

- roof and floor framing and decks
- relative stiffness
- necessary in pin connected beam-column frames with no horizontal resisting elements
Diaphragms

- connections critical
- drag struts

Braced Frames

- pin connections
- bracing to prevent lateral movements

Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - X (cross)
 - K, V or chevron
 - shear walls

Rigid Framing and Bracing
Rigid Framing and Bracing

Frame Action

- choice influenced by ease of rigid joint construction by system
 - concrete
 - steel
 - timber braces
- bending moments mean larger members

Shear Walls & Diagonal Bracing

- use with pin connected members
 - steel common
 - concrete rare
- solid shear walls
 - concrete
 - masonry
- wide spaced shear walls or diagonal bracing requires floor diaphragms
 - timber, steel or composite

Member Orientation

- strong axis
 - biggest I in a non-doubly-symmetric section
 - resists bending better
- frame action & narrow dimension buildings
 - deep direction parallel to long is typical
 - very narrow parallel to short
Member Characteristics

• long span members preclude frame action

• shear walls can be combined with bearing walls
 – use determines orientation

Building Height and Resistance

• low-medium rise
 – easier to accommodate
 – ex. residential
 • shear walls
 • diagonal bracing
 • floor diaphragms (panels)

• high rise
 – shear walls & bracing hinder functions
 – frames useful or with shear walls

Multistory Buildings

• strength design
 – frame action efficient up to ~ 10 stories
 – steel systems
 – reinforced concrete
 • flat plate & columns
 – lower lateral capacity
 – edge moments can’t be resisted
 – end walls offer shear resistance
 • flat slab
 • one-way
 • two-way
 – higher resistance
 – elevator cores
Strength Design

• moments like cantilever beam
• tube action – bigger I
• elements
 – rigid at exterior resist lateral loads
 – interior can only carry gravity loads
• “stiffen” narrow shaped plans with shape

Deflection and Motion Control

• serviceability issues
 – vibration
 – deflection
 – displacement
• mechanisms
 – stiffness
 – tuned mass dampers
• rule of thumb:
 – limit static wind load deflections to h/500

Wind Design

• codes
 – based upon minimum wind speed with 90% probability of 50 yr non-exceedance
• loads
 – pressure
 – drag
 – rocking
 – harmonic
 – uplift
 – torsion

Wind Design Loads

• exposure
 – non-linear
 – equivalent static pressure based on wind speed

\[F_W = C_d q_h A \]
\[= pA \]
Flood Design

- **know your risk**
 - **zone A**
 - 100 year flood, no data available
 - **zone AE**
 - 100 year flood, detailed analysis
 - **zone E**
 - outside 100 year flood, minimal depths

- **loads**
 - hydrostatic pressure
 - up, down, lateral
 - impact velocities
 - scour
 - impact from debris

- **design**
 - elevation, proper site
 - shear walls with caution
 - concrete recommended