wood construction: materials & beams
Wood Beam Design

• National Design Specification
 – National Forest Products Association
 – ASD & LRFD (combined in 2005)
 – adjustment factors \times tabulated stress = allowable stress
 – adjustment factors terms, C with subscript
 – i.e, bending:

$$f_b \leq F'_b = F_b \times \left(\text{product of adjustment factors} \right)$$
Timber

- **lightweight : strength ~ like steel**
- **strengths vary**
 - by wood type
 - by direction
 - by “flaws”
- **size varies by tree growth**
- **renewable resource**
- **manufactured wood**
 - assembles pieces
 - adhesives
Wood Properties

- cell structure and density

http://www.swst.org/teach/set2/struct1.html

softwood

hardwood
Wood Properties

- moisture
 - exchanges with air easily
 - excessive drying causes warping and shrinkage
 - strength varies some

- temperature
 - steam
 - volatile products
 - combustion

http://www.swst.org/teach/set2/struct1.html
Wood Properties

- **load duration**
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- **creep**
 - additional deformation with no additional load
Structural Lumber

• **dimension** – 2 x’s (nominal)
• **beams, posts, timber, planks**
• **grading**
 – select structural
 – no. 1, 2, & 3
• **tabular values**
 by species
• **glu-lam**
• **plywood**
Adjustment Factors

- **terms**
 - $C_D = \text{load duration factor}$
 - $C_M = \text{wet service factor}$
 - $C_F = \text{size factor}$
 - visually graded sawn lumber and round timber > 12” depth

\[C_F = \left(\frac{12}{d} \right)^{\frac{1}{9}} \leq 1.0 \]

Table 5.2 (pg 177)
 Adjustment Factors

• **terms**

 – $C_{fu} = \text{flat use factor}$
 - not decking

 – $C_i = \text{incising factor}$
 - increase depth for pressure treatment

 – $C_t = \text{temperature factor}$
 - lose strength at high temperatures
Adjustment Factors

- **terms**
 - C_r = repetitive member factor
 - C_H = shear stress factor
 - splitting
 - C_V = volume factor
 - same as C_F for glue laminated timber
 - C_L = beam stability factor
 - beams without full lateral support
 - C_C = curvature factor for laminated arches
Allowable Stresses

- **design values**
 - \(F_b \): bending stress
 - \(F_t \): tensile stress
 - \(F_v \): horizontal shear stress
 - \(F_{c\perp} \): compression stress (perpendicular to grain)
 - \(F_c \): compression stress (parallel to grain)
 - \(E \): modulus of elasticity
 - \(F_p \): bearing stress (parallel to grain)
Load Combinations

• *design loads*, take the bigger of
 – (dead loads)/0.9
 – (dead loads + any possible combination of live loads)/C_D

• *deflection limits*
 – *no load factors*
 – for stiffer members:
 • $\Delta_T \text{ max from } LL + 0.5(DL)$
Beam Design Criteria

- **strength design**
 - bending stresses predominate
 - shear stresses occur

- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding
Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)
Deflection Limits

- **based on service condition, severity**

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y
Design Procedure

1. Know F_{all} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ \(f_b \leq F_b \)

4. Determine section size

\[
S = \frac{bh^2}{6}
\]
Beam Design

4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal

- \((f_v \leq F_v)\)

- W and rectangles

 \(f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}\)

- General

 \(f_{v-\text{max}} = \frac{VQ}{Ib}\)
Beam Design

7. Provide adequate bearing area at supports

\[f_p = \frac{P}{A} \leq F_p \]
Beam Design

8. Evaluate torsion

\((f_v \leq F_v) \)

- circular cross section
 \[f_v = \frac{T \rho}{J} \]

- rectangular
 \[f_v = \frac{T}{c_1 ab^2} \]

<table>
<thead>
<tr>
<th>(\frac{a}{b})</th>
<th>(c_1)</th>
<th>(c_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Joists & Rafters

- allowable load tables
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings

![Joist and Rafter Diagram]

TABLE 5.5 Allowable Spans in Feet and Inches for Floor Joists

<table>
<thead>
<tr>
<th>Joint Size (in.)</th>
<th>Spacing (in.)</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 6</td>
<td>12.0</td>
<td>10-0</td>
<td>10-3</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>9-1</td>
<td>9-4</td>
<td>9-6</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>8-7</td>
<td>8-9</td>
<td>9-0</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>7-11</td>
<td>8-2</td>
<td>8-4</td>
</tr>
<tr>
<td>2 x 8</td>
<td>12.0</td>
<td>13-2</td>
<td>13-6</td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>12-0</td>
<td>12-3</td>
<td>12-7</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>11-3</td>
<td>11-7</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>10-6</td>
<td>10-9</td>
<td>11-0</td>
</tr>
<tr>
<td>2 x 10</td>
<td>12.0</td>
<td>16-10</td>
<td>17-3</td>
<td>17-8</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>15-3</td>
<td>15-8</td>
<td>16-0</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>14-5</td>
<td>14-9</td>
<td>15-1</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>13-4</td>
<td>13-8</td>
<td>14-0</td>
</tr>
<tr>
<td>2 x 12</td>
<td>12.0</td>
<td>20-6</td>
<td>21-0</td>
<td>21-6</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>18-7</td>
<td>19-1</td>
<td>19-6</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>17-6</td>
<td>17-11</td>
<td>18-4</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>16-3</td>
<td>16-8</td>
<td>17-0</td>
</tr>
<tr>
<td>F_b</td>
<td>12.0</td>
<td>993</td>
<td>1,043</td>
<td>1,092</td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>1,093</td>
<td>1,148</td>
<td>1,202</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>1,161</td>
<td>1,220</td>
<td>1,277</td>
</tr>
<tr>
<td></td>
<td>24.0</td>
<td>1,251</td>
<td>1,314</td>
<td>1,376</td>
</tr>
</tbody>
</table>
Engineered Wood

• plywood
 – veneers at different orientations
 – glued together
 – split resistant
 – higher and uniform strength
 – limited shrinkage and swelling
 – used for sheathing, decking, shear walls, diaphragms
Engineered Wood

- glued-laminated timber
 - glulam
 - short pieces glued together
 - straight or curved
 - grain direction parallel
 - higher strength
 - more expensive than sawn timber
 - large members (up to 100 feet!)
 - flexible forms
Engineered Wood

- I sections
 - beams
- other products
 - pressed veneer strip panels (Parallam)
- wood fibers
 - Hardieboard: cement & wood
Timber Elements

- stressed-skin elements
 - modular built-up “plates”
 - typically used for floors or roofs
Timber Elements

- *built-up box sections*
 - *built-up beams*
 - *usually site-fabricated*
 - *bigger spans*
Timber Elements

- **trusses**
 - long spans
 - versatile
 - common in roofs
Timber Elements

• folded plates and arch panels
 – usually of plywood
Timber Elements

• arches and lamellas
 – arches commonly laminated timber
 – long spans
 – usually only for roofs
Approximate Depths

FIGURE 15-3 Approximate span ranges for timber systems.