Elements of Architectural Structures: Form, Behavior, and Design
ARCH 614
Dr. Anne Nichols
Spring 2013

Lecture twenty four

concrete construction: flat spanning systems

http://nisee.berkeley.edu/godden
Reinforced Concrete Design

- economical & common
- resist lateral loads
Reinforced Concrete Design

• flat plate
 – 5”-10” thick
 – simple formwork
 – lower story heights

• flat slab
 – same as plate
 – 2 ¼”–8” drop panels
Reinforced Concrete Design

• beam supported
 – slab depth ~ L/20
 – 8”–60” deep

• one-way joists
 – 3”–5” slab
 – 8”–20” stems
 – 5”-7” webs
Reinforced Concrete Design

- two-way joist
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs
- beam supported slab
 - 5”-10” slabs
 - taller story heights
Reinforced Concrete Design

- simplified frame analysis
 - strips, like continuous beams

- moments require flexural reinforcement
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous
Reinforced Concrete Design

- one-way slabs (wide beam design)
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - w_u from combos
 - uniform loads with $L/D \leq 3$
 - ℓ_n is clear span (+M) or average of adjacent clear spans (-M)
Reinforced Concrete Design

Figure 2-3 Positive Moments—All Cases

Figure 2-4 Negative Moments—Beams and Slabs
Shear in Concrete

• at columns
• want to avoid stirrups
• can use shear studs or heads
Shear in Concrete

• critical section at d/2 from
 - column face, column capital or drop panel
Shear in Concrete

- at columns with waffle slabs
Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase
General Beam Design

- f'_c & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - $b:h$ of 1:1.5-1:2.5
 - b_w & b_f for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

$$S = \frac{bh^2}{6}$$
General Beam Design (cont’d)

• custom design:
 – longitudinal steel
 – shear reinforcement
 – detailing