Design Methods

- different approaches to meeting strength/safety requirements
 - allowable stress design (elastic)
 - ultimate strength design
 - limit state design
 - plastic design
 - load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety

Load Types

- \(D \) = dead load
- \(L \) = live load
- \(L_r \) = live roof load
- \(W \) = wind load
- \(S \) = snow load
- \(E \) = earthquake load
- \(R \) = rainwater load or ice water load
- \(T \) = effect of material & temperature
- \(H \) = hydraulic loads from soil (F from fluids)
Weight of Materials

- for a volume
 - \(W = \gamma V \) where \(\gamma \) is weight/volume
 - \(W = \gamma tA \) for an extruded area with height of \(t \)

Building Codes

- documentation
 - laws that deal with planning, design, construction, and use of buildings
 - regulate building construction for
 - fire, structural and health safety
 - cover all aspect of building design
 - references standards
 - acceptable minimum criteria
 - material & structural codes

Prescribed Loads

- ASCE-7
 - live load (not roof) reductions allowed
- International Building Code
 - occupancy
 - wind: pressure to static load
 - seismic: shear load function of mass and response to acceleration
 - fire resistance
Code Reduction of Live Loads

- for (ordinary) live loads
 - factored area supported $\geq 400 \text{ ft}^2$
 - reduction can't exceed
 - $0.5L_o$ (one floor) or $0.4L_o$ (more)

$$L = L_o \left(0.25 + \frac{15}{\sqrt{K_{LL}A_T}} \right)$$

- for live loads $> 100 \text{ lb/ft}^2$
 - live load reduction of 20% on columns

- for (ordinary) roofs: $L_r = L_o R_1 R_2$
 - $12 \text{ lb/ft}^2 \leq L_r \leq 20 \text{ lb/ft}^2$

Structural Codes

- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function

Design Methods

- probability of loads and resistance
- material variability
- overload, fracture, fatigue, failure
- allowable stress design
 $$f_{\text{actual}} = \frac{P}{A} \leq f_{\text{allowed}} = \frac{f_{\text{capacity}}}{F.S.}$$
- limit state design
 - design loads & capacities
Allowable Stress Design

• historical method
• a.k.a. working stress, strength design
• stresses stay in ELASTIC range

ASD Load Combinations

• \(D \)
• \(D + L \)
• \(D + (L_r \text{ or } S \text{ or } R) \)
• \(D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R) \)
• \(D + (0.6W \text{ or } 0.7E) \)
• \(D + 0.75L + 0.75(0.6W \text{ or } 0.7E) + (0.75L_r \text{ or } S \text{ or } R) \)
• \(0.6D + (0.6W \text{ or } 0.7E) \)

Limit State Design

• a.k.a. strength design
• stresses go to limit (strain outside elastic range)
• loads may be factored
• resistance or capacity reduced by a factor
• based on material behavior
• “state of the art”

Limit State Design

• load and resistance factor design (LRFD)
 – loads:
 • not constant,
 • possibly more influential on failure
 • happen more or less often
 – UNCERTAINTY
 \[\gamma_D P_D + \gamma_L P_L \leq \phi P_u \]
 \(\phi \) - Resistance factor
 \(\gamma \) - Load factor for (D)ead & (L)ive load
LRFD Load Combinations
ASCE-7 (2010)

- $1.4D$
- $1.2D + 1.6L + 0.5(L_r$ or S or $R)$
- $1.2D + 1.6(L_r$ or S or $R) + (L$ or $0.5W)$
- $1.2D + 1.0W + L + 0.5(L_r$ or S or $R)$
- $1.2D + 1.0E + L + 0.2S$
- $0.9D + 1.0W$
- $0.9D + 1.0E$

 - F has same factor as D in 1-5 and 7
 - H adds with 1.6 and resists with 0.9 (permanent)

Load Tracing

- **how loads are transferred**
 - usually starts at top
 - distributed by supports as **actions**
 - distributed by **tributary areas**

Load Tracing

- **tributary load**
 - think of water flow
 - “concentrates” load of area into center

\[w = \left(\frac{\text{load}}{\text{area}} \right) \times (\text{tributary width}) \]
Load Paths

• wall systems

- Load Paths

• openings & pilasters

- Load Paths

• foundations
Load Paths

• deep foundations