Steel Beam Design

- American Institute of Steel Construction
 - Manual of Steel Construction
 - ASD & LRFD
 - combined in 2005

Steel Properties

- high strength to weight ratio
- elastic limit – yield (F_y)
- inelastic – plastic
- ultimate strength (F_u)
- ductile
- strength sensitive to temperature
- can corrode
- fatigue

Steel Materials

- steel grades
 - ASTM A36 – carbon
 - plates, angles
 - $F_y = 36$ ksi & $F_u = 58$ ksi
 - ASTM A572 – high strength low-alloy
 - some beams
 - $F_y = 60$ ksi & $F_u = 75$ ksi
 - ASTM A992 – for building framing
 - most beams
 - $F_y = 50$ ksi & $F_u = 65$ ksi
Structural Steel

- standard rolled shapes (W, C, L, T)
- open web joists
- plate girders
- decking

Steel Construction

- welding
- bolts

Unified Steel Design

- ASD
 \[R_a \leq \frac{R_n}{\Omega} \]
 - bending (braced) \(\Omega = 1.67 \)
 - bending (unbraced*) \(\Omega = 1.67 \)
 - shear \(\Omega = 1.5 \) or 1.67
 - shear (bolts & welds) \(\Omega = 2.00 \)
 - shear (welds) \(\Omega = 2.00 \)

* flanges in compression can buckle
LRFD

- loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
- UNCERTAINTY

 \[R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n \]

 \(\phi \) - resistance factor
 \(\gamma \) - load factor for (D)ead & (L)ive load

LRFD Steel Beam Design

- limit state is yielding all across section
- outside elastic range
- load factors & resistance factors

LRFD Load Combinations

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (L or 0.5W)
- 1.2D + 1.0W + L + 0.5(L_r or S or R)
- 1.2D + 1.0E + L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E
 - F has same factor as D in 1-5 and 7
 - H adds with 1.6 and resists with 0.9 (permanent)

Beam Design Criteria (revisited)

- strength design
 - bending stresses predominate
 - shear stresses occur
- serviceability
 - limit deflection
 - stability
- superpositioning
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)
Steel Beams

- lateral stability - bracing
- local buckling – stiffen, or bigger I_y

Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - “crippling”

Local Buckling

- flange
- web

Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners
Shear in Web
• plate girders and stiffeners

Steel Beams
• bearing
 – provide adequate area
 – prevent local yield of flange and web

LRFD - Flexure

\[\sum \gamma_i R_i = M_u \leq \phi_b M_n = 0.9 F_y Z \]

- \(M_u \): maximum moment
- \(\phi_b \): resistance factor for bending = 0.9
- \(M_n \): nominal moment (ultimate capacity)
- \(F_y \): yield strength of the steel
- \(Z \): plastic section modulus*

Internal Moments - at yield
• material hasn’t failed

\[M_y = \frac{I}{c} f_y = \frac{bh^2}{6} f_y \]

\[= \frac{b(2c)^2}{6} f_y = \frac{2bc^2}{3} f_y \]
Internal Moments - ALL at yield

- all parts reach yield
- plastic hinge forms
- ultimate moment
- $A_{\text{tension}} = A_{\text{compression}}$

\[M_p = bc^2 f_y = \frac{3}{2} M_y \]

n.a. of Section at Plastic Hinge

- cannot guarantee at centroid
- $f_y A_1 = f_y A_2$
- moment found from yield stress times moment area

\[M_p = f_y A_1 d = f_y \sum_{n.a} A_i d_i \]

Plastic Hinge Development

Plastic Hinge Examples

- stability can be effected
Plastic Section Modulus

- **shape factor, k**
 \[k = \frac{M_p}{M_y} \]

 = 3/2 for a rectangle

 \[\approx 1.1 \text{ for an } I \]

- **plastic modulus, }\]
 \[Z = \frac{M_p}{f_y} \]

LRFD - Shear

\[\Sigma \gamma_i R_i = V_u \leq \phi_v V_n = 1.0 \left(0.6 F_{yw} A_w \right) \]

- **maximum shear**
- **resistance factor for shear** = 0.9
- **nominal shear**
- **yield strength of the steel in the web**
- **area of the web** = \(t_w d \)

LRFD - Flexure Design

- **limit states for beam failure**
 1. yielding
 2. lateral-torsional buckling
 3. flange local buckling
 4. web local buckling

- **minimum }\]
 \[\Sigma \gamma_i R_i = M_u \leq \phi_b M_n \]

Compact Sections

- **plastic moment can form before any buckling**
- **criteria**

 - \[- \frac{b_f}{2 t_f} \leq 0.38 \left(\frac{E}{F_y} \right) \]

 - \[- \frac{h_c}{t_w} \leq 3.76 \left(\frac{E}{F_y} \right) \]

TABLE A.3 Properties of W Shapes
Lateral Torsional Buckling

\[M_n = C_b \left[\text{moment based on lateral buckling} \right] \leq M_p \]

\[C_b = \frac{12.5M_{\text{max}}}{2.5M_{\text{max}} + 2M_A + 4M_B + 3M_C} \]

- \(C_b \) = modification factor
- \(M_{\text{max}} \) = \(|\text{max moment}|\), unbraced segment
- \(M_A \) = \(|\text{moment}|\), 1/4 point
- \(M_B \) = \(|\text{moment}|\), center point
- \(M_C \) = \(|\text{moment}|\), 3/4 point

Charts & Deflections

- **beam charts**
 - solid line is most economical
 - dashed indicates there is another more economical section
 - self weight is NOT included in \(M_n \)
- **deflections**
 - no factors are applied to the loads
 - often governs the design

Beam Design Charts

Design Procedure (revisited)

1. Know unbraced length, material, design method (\(\Omega, \phi \))

2. Draw V & M, finding \(M_{\text{max}} \)

3. Calculate \(Z_{\text{req'd}} \) \left(f_b \leq F_b \right)
 \(M_u \leq \phi_b M_n \)

4. Choose (economical) section from section or beam capacity charts
Beam Charts by Z_x (pg. 250)

<table>
<thead>
<tr>
<th>Designation</th>
<th>I_x (in4)</th>
<th>I_y (in4)</th>
<th>M_y (kip-in)</th>
<th>M_x (kip-in)</th>
<th>r_x (in)</th>
<th>r_y (in)</th>
<th>X_1 (in)</th>
<th>X_2 (in)</th>
<th>s_x (kip/in2)</th>
<th>s_y (kip/in2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 33 x 141</td>
<td>514</td>
<td>101.1</td>
<td>15.1</td>
<td>25.9</td>
<td>0.23</td>
<td>0.22</td>
<td>16.1</td>
<td>16.1</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>W 30 x 140</td>
<td>504</td>
<td>95.0</td>
<td>13.0</td>
<td>22.0</td>
<td>0.23</td>
<td>0.22</td>
<td>16.2</td>
<td>16.2</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>W 27 x 132</td>
<td>472</td>
<td>72.7</td>
<td>17.1</td>
<td>31.9</td>
<td>0.23</td>
<td>0.22</td>
<td>16.3</td>
<td>16.3</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>W 24 x 132</td>
<td>448</td>
<td>67.0</td>
<td>13.5</td>
<td>25.9</td>
<td>0.23</td>
<td>0.22</td>
<td>16.4</td>
<td>16.4</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>W 22 x 132</td>
<td>418</td>
<td>62.0</td>
<td>9.7</td>
<td>17.2</td>
<td>0.23</td>
<td>0.22</td>
<td>16.5</td>
<td>16.5</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>W 20 x 132</td>
<td>391</td>
<td>54.0</td>
<td>6.0</td>
<td>13.3</td>
<td>0.23</td>
<td>0.22</td>
<td>16.6</td>
<td>16.6</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>W 18 x 132</td>
<td>356</td>
<td>46.0</td>
<td>4.0</td>
<td>9.0</td>
<td>0.23</td>
<td>0.22</td>
<td>16.7</td>
<td>16.7</td>
<td>30.6</td>
<td>30.6</td>
</tr>
<tr>
<td>W 16 x 132</td>
<td>322</td>
<td>37.0</td>
<td>2.3</td>
<td>6.0</td>
<td>0.23</td>
<td>0.22</td>
<td>16.8</td>
<td>16.8</td>
<td>30.6</td>
<td>30.6</td>
</tr>
</tbody>
</table>

Beam Design (revisited)

4*. Include self weight for M_{max}

- and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper

Beam Design (revisited)

6. Evaluate shear stresses - horizontal

- $(f_v \leq F_v)$ or $(V_u \leq \phi V_n)$

- W and rectangles
 \[
 f_{v_{-max}} = \frac{3V}{2A} \approx \frac{V}{A_{web}}
 \]

- Thin walled sections
 \[
 f_{v_{-max}} = \frac{VQ}{Ib}
 \]

Beam Design (revisited)

7. Provide adequate bearing area at supports

\[
 f_p = \frac{P}{A} \leq F_p
\]
Beam Design (revisited)

8. Evaluate torsion

\[f_v \leq F_v \]

- circular cross section
 \[f_v = \frac{T\rho}{J} \]
- rectangular
 \[f_v = \frac{T}{c_1ab^2} \]

9. Evaluate deflections – NO LOAD FACTORS

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]

Load Tables & Equivalent Load

- uniformly distributed loads
- equivalent “w”
 \[M_{\text{max}} = \frac{w_{\text{equivalent}}L^2}{8} \]

Steel Arches and Frames

- solid sections
- open web

http://nisee.berkeley.edu/godden

Freedom Steel
Steel Shell and Cable Structures

Approximate Depths

<table>
<thead>
<tr>
<th>Span (feet)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decks</td>
<td></td>
</tr>
<tr>
<td>Wide flange</td>
<td></td>
</tr>
<tr>
<td>Plate girders</td>
<td></td>
</tr>
<tr>
<td>Open-web joists</td>
<td></td>
</tr>
<tr>
<td>Fink trusses</td>
<td></td>
</tr>
<tr>
<td>Howe trusses</td>
<td></td>
</tr>
<tr>
<td>Box girders</td>
<td></td>
</tr>
<tr>
<td>Special trusses</td>
<td></td>
</tr>
<tr>
<td>Arches</td>
<td></td>
</tr>
<tr>
<td>Ribbed domes</td>
<td></td>
</tr>
<tr>
<td>Cables</td>
<td></td>
</tr>
<tr>
<td>Space frame</td>
<td></td>
</tr>
<tr>
<td>Space frame</td>
<td></td>
</tr>
</tbody>
</table>