Connections

• needed to:
 – support beams by columns
 – connect truss members
 – splice beams or columns

• transfer load

• subjected to
 – tension or compression
 – shear
 – bending

Bolts

• bolted steel connections

• types
 – materials
 • high strength
 • A307, A325, A492
 – location of threads
 • included
 • excluded
 – friction or bearing
 • always tightened
Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - single shear or tension
 \[R_n = F_n A_b \]
 - double shear
 \[R_n = F_n 2A_b \]

Bolts

- bearing (\(\phi_x\))
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi R_n \]
 - deformation is concern
 \[R_n = 1.2L_c t F_u \leq 2.4dt F_u \]
 - deformation isn’t concern
 \[R_n = 1.5L_c t F_u \leq 3.0dt F_u \]
 - long slotted holes
 \[R_n = 1.0L_c t F_u \leq 2.0dt F_u \]
 \(L_c\) – clear length to edge or next hole (ex. 1¼”, 3”)

Table 7-1: Available Shear Strength of Bolts, kips
Table 7-2: Available Tensile Strength of Bolts, kips

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi v R_n \]
 - single shear or tension
 \[R_n = F_n A_b \]
 - double shear
 \[R_n = F_n 2A_b \]
Bolts

Tension Members

- steel members can have holes
- reduced area
 \[A_n = A_g - A_{of\ all\ holes} + \frac{i \Sigma s^2}{4g} \]
- increased stress

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
- shear lag \[A_e \leq A_n U \]

Tension Members

- limit states for failure
 \[P_a \leq \frac{P_n}{\Omega} \quad P_u \leq \phi_t P_n \]

1. yielding \[\phi_t = 0.9 \quad P_n = F_y A_g \]
2. rupture* \[\phi_t = 0.75 \quad P_n = F_u A_e \]

\(A_g \) - gross area
\(A_e \) - effective net area
(holes 3/16” + d)
\(F_u \) = the tensile strength of the steel (ultimate)
Framed Beam Connections

- angles
 - bolted
 - welded

Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling
Beam Connections

\[R_n = 0.6 F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6 F_y A_{gv} + U_{bs} F_u A_{nt} \]

- where \(U_{bs} \) is 1 for uniform tensile stress

block shear rupture
tension rupture

Other Bolted Connections

- truss gussets
- base plates
- splices

The Royal Ontario Museum
Toronto, Canada
Daniel Libeskind
(AISC - Steel Structures of the Everyday)