Welded Connection Design

• considerations
 – shear stress
 – yielding
 – rupture

Welded Connection Design

• weld terms
 – butt weld
 – fillet weld
 – plug weld
 – throat
• field welding
• shop welding
Welded Connection Design

- **weld process**
 - melting of material
 - melted filler - electrode
 - shielding gas / flux
 - potential defects

- **weld materials**
 - E60XX
 - E70XX
 \[F_{EXX} = 70 \text{ ksi} \]

Welded Connection Design

- **shear failure assumed**
- **throat**
 \[T = 0.707 \times \text{weld size} \]
- **area**
 \[A = T \times \text{length of weld} \]
- **weld metal generally stronger than base metal** (ex. \(F_y = 50 \text{ ksi} \))

Welded Connection Design

- **minimum**
 - table

- **maximum**
 - material thickness (to ¼”)
 - 1/16” less

- **min. length**
 - 4 x size min.
 - \(\geq 1 \frac{1}{2} ” \)

\[R_a \leq R_n \]

\[R_n \leq \phi R_n \]

\[\phi = 0.75 \]

\[R_n = 0.6 F_{EXX} T l = S l \]

Welded Connection Design

- table for \(\phi S \)

<table>
<thead>
<tr>
<th>Material Thickness of Thinner Plate Joiners (in.)</th>
<th>Minimum Size of Fillet Welds (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{16}) to (\frac{1}{4})...</td>
<td>(\frac{1}{8})...</td>
</tr>
<tr>
<td>(\frac{1}{8})...</td>
<td>(\frac{1}{8})...</td>
</tr>
<tr>
<td>(\frac{1}{8})...</td>
<td>(\frac{3}{32})...</td>
</tr>
</tbody>
</table>

\[(1) \text{ Limit dimensions of fillet welds. Single pass welds not to be used.} \]

\[(2) \text{ See Section 5.2.7 for maximum size of fillet welds.} \]
Framed Beam Connections

• welded example (shear)

(AISC - Steel Structures of the Everyday)

Framed Beam Connections

• welded moment example

(AISC - Steel Structures of the Everyday)

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)
Light-gage Steel

- **sheet metal**
 - shaped
- **studs, panels, window frames**
- **gage**
 - based on weight of 41.82 lb/ft² / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in
 - 0.6, 0.85, 1.0, 1.3, 1.6 mm

Steel Decks

- **“Texas” style**
 - corrugated
- **common**
 - 1 – 3 spans
 - can be insulated
 - composite
 - with concrete

Steel Decks

- common fire proofing
 - cementicious spray
- composite concrete
- non-composite
 - concrete is fill
- lateral bracing
- diaphragm action

Steel Decks

- load tables

VERTICAL LOADS FOR TYPE 3N

<table>
<thead>
<tr>
<th>No. of</th>
<th>Deck</th>
<th>Load Tables</th>
<th>Load Tables</th>
<th>Load Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Notes:
1. Load tables are calculated using sectional properties based on the steel design thickness shown in the Steel Deck and Lite CDE/DEP Manual.
2. Load tables shown in the shaded area are governed by the live load deflection not in excess of 12/100 of the span.
3. Steel Decks not shown in shaded area are not covered under Factory Mutual.