Concrete Beam Design

• composite of concrete and steel
• American Concrete Institute (ACI)
 – design for maximum stresses
 – limit state design
 • service loads x load factors
 • concrete holds no tension
 • failure criteria is yield of reinforcement
 • failure capacity x reduction factor
 • factored loads < reduced capacity
 – concrete strength = f'_{c}

Concrete Construction

• cast-in-place
• tilt-up
• prestressing
• post-tensioning

Concrete

• low strength to weight ratio
• relatively inexpensive
 – Portland cement
 – aggregate
 – water
• hydration
• fire resistant
• creep & shrink
Reinforcement

• deformed steel bars (rebar)
 – Grade 40, $F_y = 40$ ksi
 – Grade 60, $F_y = 60$ ksi - most common
 – Grade 75, $F_y = 75$ ksi
 – US customary in # of 1/8” ϕ

• longitudinally placed
 – bottom
 – top for compression reinforcement
 – spliced, hooked, terminated...

Transformation of Material

• n is the ratio of E's
 \[n = \frac{E_2}{E_1} \]

 • effectively widens a material to get
 same stress distribution

Behavior of Composite Members

• plane sections remain plane

• stress distribution changes

\[f_1 = E_1 \varepsilon = -\frac{E_1 y}{\rho} \]

\[f_2 = E_2 \varepsilon = -\frac{E_2 y}{\rho} \]

Stresses in Composite Section

• with a section transformed to one
 material, new I

 – stresses in that
 material are
 determined as usual

 – stresses in the other
 material need to be
 adjusted by n

\[n = \frac{E_2}{E_1} = \frac{E_{\text{steel}}}{E_{\text{concrete}}} \]

\[f_c = -\frac{M_y}{I_{\text{transformed}}} \]

\[f_s = -\frac{M_y n}{I_{\text{transformed}}} \]
Reinforced Concrete - stress/strain

- Stress distribution
 - Stresses in the concrete above the neutral axis are compressive and non-linearly distributed. In the tension zone below the neutral axis, the concrete is assumed to be linear and the tensile force is taken up by reinforcing steel.

- Typical stress-strain curve for concrete

Reinforced Concrete Analysis

- For stress calculations
 - Steel is transformed to concrete
 - Concrete is in compression above n.a. and represented by an equivalent stress block
 - Concrete takes no tension
 - Steel takes tension
 - Force ductile failure

Location of n.a.

- Ignore concrete below n.a.
- Transform steel
- Same area moments, solve for x

\[bx \cdot \frac{x}{2} - nA_s (d - x) = 0 \]

T sections

- N.a. equation is different if n.a. below flange

\[b_h h_f \left(x - \frac{h_f}{2} \right) + (x - h_f) b_w \frac{(x - h_f)}{2} - nA_s (d - x) = 0 \]
ACI Load Combinations*

- 1.4D
- 1.2D + 1.6L + 0.5(L_r or S or R)
- 1.2D + 1.6(L_r or S or R) + (1.0L or 0.5W)
- 1.2D + 1.0W + 1.0L + 0.5(L_r or S or R)
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

*can also use old ACI factors

Reinforced Concrete Design

- stress distribution in bending

![Diagram of stress distribution in bending]

Wang & Salmon, Chapter 3

Force Equations

- \(C = 0.85 f'_c ba \)
- \(T = A_s f_y \)
- where
 - \(f'_c \) = concrete compressive strength
 - \(a \) = height of stress block
 - \(\beta_1 \) = factor based on \(f'_c \)
 - \(x \) = location to the n.a.
 - \(b \) = width of stress block
 - \(f_y \) = steel yield strength
 - \(A_s \) = area of steel reinforcement

Equilibrium

- \(T = C \)
- \(M_n = T(d-a/2) \)
 - \(d \) = depth to the steel n.a.
- with \(A_s \)
 - \(a = \frac{A_s f_y}{0.85 f'_c b} \)
 - \(M_u \leq \phi M_n \) \(\phi = 0.9 \) for flexure
 - \(M_u = \phi T(d-a/2) = \phi A_s f_y (d-a/2) \)
Over and Under-reinforcement

- over-reinforced
 - steel won’t yield
- under-reinforced
 - steel will yield
- reinforcement ratio
 \[\rho = \frac{A_s}{bd} \]
 - use as a design estimate to find \(A_s, b, d \)
 - \(\text{max } \rho \) is found with \(\epsilon_{\text{steel}} \geq 0.004 \) (not \(\rho_{\text{bal}} \))

\[A_s \text{ for a Given Section} \]

- several methods
 - guess a and iterate
 1. guess \(a \) (less than n.a.)
 2. \(A_s = \frac{0.85 f'_c ba}{f_y} \)
 3. solve for \(a \) from \(M_u = \phi A_s f_y (d-a/2) \)
 \[a = 2 \left(d - \frac{M_u}{\phi A_s f_y} \right) \]
 4. repeat from 2. until \(a \) from 3. matches \(a \) in 2.

\[A_s \text{ for a Given Section (cont)} \]

- chart method
 - Wang & Salmon Fig. 3.8.1 \(R_n \) vs. \(\rho \)
 1. calculate \(R_n = \frac{M_n}{bd^2} \)
 2. find curve for \(f'_c \) and \(f_y \) to get \(\rho \)
 3. calculate \(A_s \) and \(a \)
- simplify by setting \(h = 1.1d \)

Reinforcement

- min for crack control
- required
 \[A_s = \frac{3 \sqrt{f'_c}}{f_y} (bd) \]
- not less than
 \[A_s = \frac{200}{f_y} (bd) \]
- \(A_{s\text{-max}} \): \(a = \beta_1(0.375d) \)
- typical cover
 - 1.5 in, 3 in with soil
- bar spacing
Approximate Depths