Shear in Concrete Beams

- flexure combines with shear to form diagonal cracks
- horizontal reinforcement doesn’t help
- stirrups = vertical reinforcement

ACI Shear Values

- V_u is at distance d from face of support
- shear capacity: $V_c = \nu_c \times b_w d$
 - where b_w means thickness of web at n.a.

- shear stress (beams)
 - $\nu_c = 2\sqrt{f'_c}$
 - $\phi = 0.75$ for shear
 - f'_c is in psi
 - $\phi V_c = \phi 2\sqrt{f'_c} b_w d$

- shear strength:
 - $V_u \leq \phi V_c + \phi V_s$
 - V_s is strength from stirrup reinforcement
Stirrup Reinforcement

- **shear capacity:**
 \[V_s = \frac{A_v f_y d}{s} \]
 - \(A_v \) = area in all legs of stirrups
 - \(s \) = spacing of stirrup

- may need stirrups when concrete has enough strength!

Required Stirrup Reinforcement

- **spacing limits**

<table>
<thead>
<tr>
<th>(V_s \leq \frac{f_{cd}}{2})</th>
<th>(\frac{V_s}{V_u} < \frac{2}{3})</th>
<th>(\frac{V_u}{V_d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 \leq \phi \leq 1)</td>
<td>(\phi = \frac{V_s}{V_d})</td>
<td>(\frac{V_u}{V_d})</td>
</tr>
</tbody>
</table>

- **Recommended minimum**
 - stirrup spacing, \(s \)
 - \(s \geq 0.75 \) ft

- **Maximum**
 - \(s \geq 5 \) in

Torsional Stress & Strain

- can see torsional stresses & twisting of axi-symmetrical cross sections
 - torque
 - remain plane
 - undistorted
 - rotates

- not true for square sections....

Shear Stress Distribution

- depend on the deformation
 - \(\phi \) = angle of twist
 - measure

- can prove planar section doesn’t distort
Shearing Strain

- related to ϕ
 \[\gamma = \frac{\rho \phi}{L} \]
- ρ is the radial distance from the centroid to the point under strain
- shear strain varies linearly along the radius: γ_{max} is at outer diameter

Torsional Stress - Strain

- know $f_v = \tau = G \cdot \gamma$ and $\gamma = \frac{\rho \phi}{L}$
- so $\tau = G \cdot \frac{\rho \phi}{L}$
- where G is the Shear Modulus

Torsional Stress - Strain

- from
 \[T = \Sigma \tau(\rho) \Delta A \]
- can derive
 \[T = \frac{\tau J}{\rho} \]

 – where J is the polar moment of inertia

 – elastic range
 \[\tau = \frac{T \rho}{J} \]

Shear Stress

- τ_{max} happens at outer diameter

- combined shear and axial stresses

 – maximum shear stress at 45° “twisted” plane
Shear Strain

- knowing \(\tau = G \cdot \frac{\rho \phi}{L} \) and \(\tau = \frac{T \rho}{J} \)
- solve: \(\phi = \frac{TL}{JG} \)
- composite shafts: \(\phi = \sum_i \frac{T_i L_i}{J_i G_i} \)

Noncircular Shapes

- torsion depends on \(J \)
- plane sections don’t remain plane
- \(\tau_{\text{max}} \) is still at outer diameter

\[
\tau_{\text{max}} = \frac{T}{c_1 ab^2} \quad \phi = \frac{TL}{c_2 ab^3 G}
\]

- where \(a \) is longer side (> \(b \))

Open Thin-Walled Sections

- with very large \(a/b \) ratios:

\[
\tau_{\text{max}} = \frac{T}{\frac{1}{3} ab^2} \quad \phi = \frac{TL}{\frac{1}{3} ab^3 G}
\]

Shear Flow in Closed Sections

- \(q \) is the internal shear force/unit length

\[
\tau = \frac{T}{2 t a} \quad \phi = \frac{TL}{4 t a^2} \sum_i \frac{s_i}{t_i}
\]

- \(a \) is the area bounded by the centerline
- \(s_i \) is the length segment, \(t_i \) is the thickness
Shear Flow in Open Sections
• each segment has proportion of T with respect to torsional rigidity,
\[
\tau_{\text{max}} = \frac{Tt_{\text{max}}}{\frac{1}{3} \sum b_i t_i^3}
\]

• total angle of twist:
\[
\phi = \frac{TL}{\frac{1}{3} G \sum b_i t_i^3}
\]

• I beams - web is thicker, so τ_{max} is in web

Torsional Shear Stress
• twisting moment
• and beam shear

Torsional Shear Reinforcement
• closed stirrups
• more longitudinal reinforcement
• area enclosed by shear flow

Development Lengths
• required to allow steel to yield (f_y)
• standard hooks
 – moment at beam end
• splices
 – lapped
 – mechanical connectors
Development Lengths
- \(l_d \), embedment required both sides
- proper cover, spacing:
 - No. 6 or smaller
 \[l_d = \frac{d_b F_y}{25 \sqrt{f'_c}} \text{ or 12 in. minimum} \]
 - No. 7 or larger
 \[l_d = \frac{d_b F_y}{20 \sqrt{f'_c}} \text{ or 12 in. minimum} \]

Concrete Deflections
- elastic range
 - I transformed
 - \(E_c \) (with \(f'_c \) in psi)
 - normal weight concrete (~ 145 lb/ft\(^3\))
 \[E_c = 57,000 \sqrt{f'_c} \]
 - concrete between 90 and 160 lb/ft\(^3\)
 \[E_c = w_c^{1.5} 33 \sqrt{f'_c} \]
- cracked
 - I cracked
 - \(E \) adjusted

Development Lengths
- hooks
 - bend and extension
 \[l_{dh} = \frac{1200 d_b}{\sqrt{f'_c}} \]

Development Lengths
- bars in compression
 \[l_d = \frac{0.02 d_b F_y}{\sqrt{f'_c}} \leq 0.0003 d_b F_y \]
- splices
 - tension minimum is function of \(l_d \) and splice classification
 - compression minimum
 - is function of \(d_b \) and \(F_y \)
Deflection Limits

• relate to whether or not beam supports or is attached to a damageable non-structural element

• need to check service live load and long term deflection against these

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L/180</td>
<td>roof systems (typical) – live</td>
</tr>
<tr>
<td>L/240</td>
<td>floor systems (typical) – live + long term</td>
</tr>
<tr>
<td>L/360</td>
<td>supporting plaster – live</td>
</tr>
<tr>
<td>L/480</td>
<td>supporting masonry – live + long term</td>
</tr>
</tbody>
</table>