concrete construction: flat spanning systems

Reinforced Concrete Design

• flat plate
 - 5”-10” thick
 - simple formwork
 - lower story heights

• flat slab
 - same as plate
 - 2 ¼”-8” drop panels

Reinforced Concrete Design

• beam supported
 - slab depth ~ L/20
 - 8”–60” deep

• one-way joists
 - 3”–5” slab
 - 8”–20” stems
 - 5”-7” webs

The Architect's Studio Companion

http://nisee.berkeley.edu/godden
Reinforced Concrete Design

- **two-way joist**
 - “waffle slab”
 - 3”-5” slab
 - 8”-24” stems
 - 6”-8” webs

- **beam supported slab**
 - 5”-10” slabs
 - taller story heights

Reinforced Concrete Design

- **simplified frame analysis**
 - strips, like continuous beams

- **moments require flexural reinforcement**
 - top & bottom
 - both directions of slab
 - continuous, bent or discontinuous

Reinforced Concrete Design

- **one-way slabs (wide beam design)**
 - approximate analysis for moment & shear coefficients
 - two or more spans
 - ~ same lengths
 - \(w_u \) from combos
 - uniform loads with \(L/D \leq 3 \)
 - \(\ell_n \) is clear span (+M) or average of adjacent clear spans (-M)
Shear in Concrete

- at columns
- want to avoid stirrups
- can use shear studs or heads

Openings in Slabs

- careful placement of holes
- shear strength reduced
- bending & deflection can increase
General Beam Design

- f'_c & f_y needed
- usually size just b & h
 - even inches typical (forms)
 - similar joist to beam depth
 - b:h of 1:1.5-1:2.5
 - b_w & b_f for T
 - to fit reinforcement + stirrups
- slab design, t
 - deflection control & shear

\[S = \frac{bh^2}{6} \]

General Beam Design (cont’d)

- custom design:
 - longitudinal steel
 - shear reinforcement
 - detailing