Foundations

• the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock

Foundation

Structural vs. Foundation Design

• structural design
 – choice of materials
 – choice of framing system
 – uniform materials and quality assurance
 – design largely independent of geology, climate, etc.

Structural vs. Foundation Design

• foundation design
 – cannot specify site materials
 – site is usually predetermined
 – framing/structure predetermined
 – site geology influences foundation choice
 – no site the same
 – no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior

Soil Properties & Mechanics

- compressibility
 - settlements
- strength
 - stability
 - shallow foundations
 - deep foundations
 - slopes and walls
 - ultimate bearing capacity, \(q_u \)
 - allowable bearing capacity, \(q_a = \frac{q_u}{S.F.} \)

Soil Properties & Mechanics

- strength, \(q_a \)

Bearing Failure

- shear

![Table 1804.3: Presumptive Loadbearing Values of Foundation Materials](image)

- slip zone
- punched wedge
Lateral Earth Pressure

- passive vs. active

Foundation Materials

- concrete, plain or reinforced
 - shear
 - bearing capacity
 - bending
 - embedment length, development length
- other materials (piles)
 - steel
 - wood
 - composite

Basic Foundation Requirements

- safe against instability or collapse
- no excessive/damaging settlements
- consider environment
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- economics

Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

• spread footings
• wall footings
• eccentric footings
• combined footings
• unsymmetrical footings
• strap footings

Shallow Footings

• spread footing
 – a square or rectangular footing supporting a single column
 – reduces stress from load to size the ground can withstand

Actual vs. Design Soil Pressure

• stress distribution is a function of
 – footing rigidity
 – soil behavior

• linear stress distribution assumed
Proportioning Footings

- net allowable soil pressure, \(q_{\text{net}} \)
 - \(q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s) \)
 - considers all extra weight (overburden) from replacing soil with concrete
 - can be more overburden
- design requirement with total unfactored load:
 \[
 \frac{P}{A} \leq q_{\text{net}}
 \]

Concrete Spread Footings

- failure modes

Concrete Spread Footings

- shear failure
 - one way shear
 - two way shear
Over and Under-reinforcement

- reinforcement ratio for bending
 \[\rho = \frac{A_s}{bd} \]
- use as a design estimate to find \(A_s, b, d \)
- max \(\rho \) from \(\varepsilon_{\text{steel}} \geq 0.004 \)
- minimum for slabs & footings of uniform thickness
 \[\frac{A_s}{bh} = 0.002 \text{ grade 40/50 bars} \]
 \[= 0.0018 \text{ grade 60 bars} \]

Reinforcement Length

- need length, \(\ell_d \)
 - bond
 - development of yield strength

Column Connection

- bearing of column on footing
 \[P_u \leq \phi P_n = \phi (0.85 f'_c A_1) \]
 \[\phi = 0.65 \text{ for bearing} \]
 - confined: increase \(\sqrt{\frac{A_2}{A_1}} \leq 2 \)
- dowel reinforcement
 - if \(P_u > P_b \), need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)

Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Eccentrically Loaded Footings

- footings subject to moments

\[P \]

- soil pressure resultant force **may not coincide** with the centroid of the footing

Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing

- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement

Kern Limit

- boundary of \(e \) for no tensile stress

- triangular stress block with \(p_{\text{max}} \)

\[\text{volume} = \frac{wp_x}{2} = N \]

\[p_{\text{max}} = \frac{2N}{wx} \]

Guidelines

- want resultant of load from pressure inside the middle third of base (kern)
 - ensures stability with respect to overturning

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5 \]

- pressure under toe (maximum) \(\leq q_a \)

- shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line
- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise

Combined Footing Types

- rectangular
- trapezoid
- strap or cantilever
 - prevents overturning of exterior column
- raft/mat
 - more than two columns over an extended area

Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]

\[R = P_1 + P_2 \]

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

• considerations
 – overturning
 – settlement
 – allowable bearing pressure
 – sliding
 – (adequate drainage)

Retaining Wall Proportioning

• estimate size
 – footing size, B ≈ 2/5 - 2/3 wall height (H)
 – footing thickness ≈ 1/12 - 1/8 footing size (B)
 – base of stem ≈ 1/10 - 1/12 wall height (H+h_f)
 – top of stem ≥ 12”

Retaining Walls

• procedure
 – proportion and check stability with working loads for bearing, overturning and sliding
 – design structure with factored loads

\[
SF = \frac{M \text{ resist}}{M \text{ overturning}} \geq 1.5 - 2
\]

\[
SF = \frac{F_{\text{horizontal resist}}}{F_{\text{sliding}}} \geq 1.25 - 2
\]

Retaining Walls Forces

• design like cantilever beam
 – V_u & M_u for reinforced concrete
 – V_u ≤ φV_c : φ = 0.75 for shear
 – M_u ≤ φM_n : φ = 0.9 for flexure
Retaining Wall Types

- **“gravity” wall**
 - usually unreinforced
 - economical & simple

- **cantilever retaining wall**
 - common

Deep Foundations

- **usage**
 - when spread footings, mats won’t work
 - when they are required to transfer the structural loads to good bearing material
 - to resist uplift or overturning
 - to compact soil
 - to control settlements of spread or mat foundations

Retaining Wall Types

- **counterfort wall**
 - very tall walls (> 20 - 25 ft)

- **buttress wall**

- **bridge abutment**

- **basement frame wall (large basement areas)**

Deep Foundation Types

- **piles** - usually driven, 6”-8” \(\phi \), 5’ +
 - piers
 - caissons
 - drilled shafts
 - bored piles 2.5’ - 10’/12’ \(\phi \)
 - pressure injected piles

- **piers**

- **caissons**

- **drilled shafts**

- **bored piles**

- **pressure injected piles**
Deep Foundation Types

Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)
- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete

Piles Classified By Material

- timber
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)
- concrete
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling

Piles Classified By Material

- steel
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

- **end bearing pile (point bearing)**

 \[P_a = A_p \cdot f_a \]

 for use in soft or loose materials over a dense base

- **friction piles (floating)**

 \[R_s = f(\text{adhesion}) \]

 \[R_p \approx 0 \]

 common in both clay & sand

 tapered: sand & silt

- **combination friction and end bearing**

 \[P \]

- **uplift/tension piles**

 structures that float, towers

 \[R_s \]

- **batter piles**

 \[1:12 \] to \[1:3 \] or \[1:4 \] angled,

 cost more,

 resist large horizontal loads

Piles Classified By Function

- **fender piles, dolphins, pile clusters**

 large # of piles in a small area

- **compaction piles**

 • used to densify loose sands

- **drilled piers**

 • eliminate need for pile caps

 • designed for bearing capacity (not slender)

Pile Caps and Grade Beams

- **like multiple column footing**

- **more shear areas to consider**