Masonry Design

- **Masonry Standards Joint Committee**
 - ACI, ASCE, TMS
 - ASD (+empirical)
 - linear-elastic stresses
 - LRFD added in 2002
 - referenced by IBC
 - unreinforced allows tension in flexure
 - reinforced - all tension in steel
 - walls are also in compression

Masonry Beam & Wall Design

- reinforcement increases capacity & ductility

\[
\begin{align*}
\text{STRAIN} & \quad \varepsilon_m \\
\text{STRESS} & \quad f_m = f_m(k_d)/2 \\
\text{n.a.} & \quad \text{t} \\
& \quad \text{d} \\
& \quad A_s \quad \rho = \frac{A_s}{b_d}
\end{align*}
\]
Masonry Materials

• units
 – stone, brick, concrete block, clay tile

Masonry Materials

• mortar
 – water, masonry cement, sand, lime
 – types:
 • M higher strength – 2500 psi (ave.)
 • S medium high strength – 1800 psi
 • N medium strength – 750 psi
 • O medium low strength – 350 psi
 • K low strength – 75 psi

Masonry Materials

• rebar
• grout
 – fills voids and fixes rebar
• prisms
 – used to test strength, f'_m
• fire resistant

Masonry Materials

• moisture resistance
 – weathering index for brick
 – bond and detailing
 – expansion or shrinking from water
 • provide control joints
 • parapets, corners, long walls
 • parapet with no control joint

Masonry Materials

• moisture resistance
 – weathering index for brick
 – bond and detailing
 – expansion or shrinking from water
 • provide control joints
 • parapets, corners, long walls
 • parapet with no control joint
Allowable Masonry Stresses

- **tension** - unreinforced only

<table>
<thead>
<tr>
<th>Direction of Reversed tensile stress and Masonry Type</th>
<th>Mortar Type</th>
<th>Perforated concrete or mortar</th>
<th>Perforated concrete or mortar cement or air entrained cement or air entrained</th>
<th>M or S</th>
<th>N</th>
<th>M or S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal to bed joints</td>
<td></td>
<td></td>
<td></td>
<td>106(731)</td>
<td>80(552)</td>
<td>66(455)</td>
<td>90(645)</td>
</tr>
<tr>
<td>Parallel to bed joints in running bond:</td>
<td></td>
<td></td>
<td></td>
<td>133(917)</td>
<td>133(917)</td>
<td>133(917)</td>
<td>133(917)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

1. For partially ground masonry, allowable stresses shall be determined on the basis of linear interpolation between fully ground hollow units and ungrounded hollow units based on amount (percentage) of pointing.

Masonry Walls

- **tension** normal to bed joints
- **tension** parallel to bed joints

- **Not allowed in MSJC codes**

- **Strong units**
- **Weak units**

Allowable Masonry Stresses

- **flexure**
 - \(F_b = \frac{1}{3} f'_m \) (unreinforced)
 - \(F_b = 0.45 f'_m \) (reinforced)

- **shear, unreinforced masonry**
 - \(F_v = 1.5\sqrt{f'_m} < 120 \text{ psi} \)

- **shear, reinforced masonry**
 - \(M/Vd \leq 0.25: \quad F_v = 3.0\sqrt{f'_m} \)
 - \(M/Vd \leq 0.25: \quad F_v = 2.0\sqrt{f'_m} \)

Allowable Reinforcement Stress

- **tension**
 - a) Grade 40 or 50 \(F_s = 20 \text{ ksi} \)
 - b) Grade 60 \(F_s = 32 \text{ ksi} \)
 - c) Wire joint \(F_s = 30 \text{ ksi} \)

- *no allowed increase by 1/3 for combinations with wind & earthquake
 - did before 2011 MSJC code
Reinforcement, M_s

\[C_m = f_m b (kd)/2 \]

$\Sigma F = 0$: \[A_s f_s = f_m b \frac{kd}{2} \]

ΣM about C_m: \[M_s = A_s f_s j d = \rho bd^2 j f_s \]

If $f_s = F_s$ (allowable) the moment capacity is limited by the steel

MSJC: $F_s = 20$ ksi, 32 ksi or 30 ksi by type

Reinforcement, M_m

for equilibrium: \[\sum M = 0 \] about F_s \[M_m = f_m b \frac{kd}{2} j d = 0.5 f_m bd^2 j k \]

If $f_m = F_b$ (allowable) the moment capacity is limited by the masonry

MSJC $F_b = 0.33 f'_m$

Masonry Lintels

- distributed load
 - triangular or trapezoidal

Strategy for RM Flexural Design

- to size section and find reinforcement
 - find ρ_b knowing f'_m and f_y
 - size section for some $\rho < \rho_b$
 - get k, j
 - $bd^2 = \frac{M}{\rho j F_y}$
 - get b & d in nice units
 - size reinforcement (bar size & #): $A_s = \frac{M}{F_s j d}$
 - check design: \[M_s = A_s F_s j d > M \] \[\frac{M}{F_s j d} > f'_b = \frac{0.5 bd^2 j k}{F_b} \]
Ultimate Strength Design
• LRFD
• like reinforced concrete
• useful when beam shear is high
• improved inelastic model
 – ex. earthquake loads

Masonry Columns and Pilasters
• must be reinforced

Masonry Columns
– allowable axial load
\[
P_a = \begin{cases}
0.25 f_m' A_n + 0.65 A_{st} F_s & h/r \leq 99 \\
0.25 f_m' A_n + 0.65 A_{st} F_s \left(\frac{70r}{h} \right)^2 & h/r > 99
\end{cases}
\]
\(h = \) effective length
\(A_n = \) effective area of masonry
\(A_{st} = \) effective area of column reinforcement
\(F_s = \) allowable compressive stress in column reinforcement
 (lesser of 0.4f_y or 24 ksi)

Masonry Columns and Pilasters
• considered a column when
 \(b/t < 3 \) and \(h/t > 4 \)
 • \(b \) is width of “wall”
 • \(t \) is thickness of “wall”
• slender is
 – 8” one side
 – \(h/t \leq 25 \)
• needs ties
• eccentricity may be required

Figure 9.2: Columns and pilaster details.
Masonry Walls (unreinforced)

- allowable axial stresses

\[F_a = 0.25 f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \]

\[F_a = 0.25 f_m' \left(\frac{70r}{h} \right)^2 \]

\[\frac{h}{r} \leq 99 \]

\[\frac{h}{r} > 99 \]

Design

- masonry columns and walls (unreinforced)

\[\frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0 \quad \text{and} \quad f_b - f_a \leq F_t \]

\[- h/r < 99 \quad F_a = 0.25 f_m' \left[1 - \left(\frac{h}{140r} \right)^2 \right] \]

\[- h/r > 99 \quad F_a = 0.25 f_m' \left(\frac{70r}{h} \right)^2 \]

\[F_b = 0.33 f_m' \]

Design

- masonry columns and walls - loading

- wind loading

- eccentric axial load

- “virtual” eccentricity, \(e_1 \)

Design

- masonry columns and walls – with rebar

- wall reinforcement usually at center and ineffective in compression

\[f_a + f_b \leq F_b \quad \text{provided} \quad f_a \leq F_a \]
Design Steps Knowing Loads

1. **assume limiting stress**
 - buckling, axial stress, combined stress
2. **solve for r, A or S**
3. **pick trial section**
4. **analyze stresses**
5. **section ok?**
6. **stop when section is ok**