Arch & Shell Systems

- curved, thin surface or 2D structures
- see very little bending stresses
- design for
 - axial stresses
 - shear stresses
- efficient because of uniformly distributed loads

Arches

- behavior
 - stabilization
 - resist thrust
- compression only

Millennium Bridge in Newcastle, UK

Office Hours

Professor Anne Nichols (345-6546)

link to posted schedule

Shells & Systems 3
Lecture 28
Elements of Architectural Structures
ARCH 614

S2007abn

Shells & Systems 2
Lecture 28
Elements of Architectural Structures
ARCH 614

S2008abn

Shells & Systems 1
Lecture 28
Elements of Architectural Structures
ARCH 614

S2007abn
Shell Types

- shape classifications
 - developable:
 - revolution (vault)
 - synclastic
 - doubly curved
 - same direction
 - anticlastic:
 - doubly curved
 - opposite curvature
 - free form

Vaults

- “wide” arch

Vaulted Shells

- can resist tension
- shape adds “depth”

Kimball Museum, Kahn 1972
Kimball Museum, Kahn 1972

- outer shell edges

- skylights at peak

Domes

- arch of revolution
- compression
- some tension

Domes

- stresses and displacements

© Harvard GSD
Annunciation Greek Orthodox Church

- Wright, 1956

![Annunciation Greek Orthodox Church](http://www.bluffton.edu)

Anticlastic Shells

- saddle or “ruled” shapes
- surface generated with straight lines
- tension follows “cable drape”
- compression follows “arch”

Zarzuela Hippodrome, Torroja 1935

![Zarzuela Hippodrome, Torroja 1935](http://www.bluffton.edu)
Zarzuela Hippodrome, Torroja 1935

Folded Plates
- increased stiffness with folding

Illini Hall, Harrison & Abramovitz 1963
- Assembly Hall, University of Illinois
- Harrison & Abramovitz 1963
- Edge-supported dome spanning 400 feet wound with 614 miles of one-fifth inch steel wire

Systems
- total of components
- behavior of whole
- classifications
 - one-way
 - two-way
 - tubes
 - braced
 - unbraced
One-Way Systems
• horizontal vs. vertical

Two-Way Systems
• spanning system less obvious
• horizontal
 – plates
 – slabs
 – space frames
• vertical
 – columns
 – walls

System Selection
• evaluation of alternatives
Structural Design Criteria

- Components stay together
- Structure acts as whole to be stable
 - Resist sliding
 - Resist overturning
 - Resist twisting and distortion
- Internal stability
 - Interconnectedness
- Strength & stiffness

Structural Design Sequences

- First-order design
 - Structural type and organization
 - Design intent
 - Contextual or programmatic
- Second-order
 - Structural strategies
 - Material choice
 - Structural systems
- Third-order
 - Member shaping & sizing

Design Issues

- Lateral stability – all directions

Design Issues

- Configuration
Design Issues

• vertical load resistance

![Walls and Slab Systems](image1)

![Columns and Beam Systems](image2)

- walls
- columns

Design Issues

• lateral load resistance

- Shear walls may be arranged in a two-form to resist lateral forces from all directions.
- When combined with other stabilizing mechanisms, shear walls may be arranged so as to resist forces in any one direction of a building.

Design Issues

• lateral load resistance

- Shear walls are commonly used with column and slab systems. In this elevation and plan, the shear walls are shown incorporated into a pair of vertical cores.
- Rigid frame structures require an additional connection so shear walls, as shown in this elevation and plan.
- The location of braced frames or shear walls must be considered in relation to the elevation and plan of the building.

Design Issues

• multi-story
 - cores, tubes, braced frames
Design Issues

- multi-story
 - avoid discontinuities
 - vertically
 - horizontally

Final Exam Material

- my list:
 - equilibrium - ΣF & ΣM
 - supports, trusses, cables, beams, pinned frames, rigid frames
 - materials
 - strain & stress (E), temperature, constraints
 - beams
 - distributed loads, tributary width, V&M, stresses, design, section properties (I & S), pitch, deflection

Final Exam Material

- my list (continued):
 - columns
 - stresses, design, section properties (I & r)
 - frames
 - P, V & M, $P-\Delta$, effective length with joint stiffness, connection design, tension member design
 - foundations
 - types
 - sizing & structural design
 - overturning and sliding

- systems
 - levels
 - design considerations
 - design specifics
 - steel (ASD & LRFD)
 - concrete
 - wood
 - masonry