Elements of Architectural Structures:

Form, Behavior, and Design

ARCH 614

Dr. Anne Nichols

Spring 2013

Lecture eight

Beam sections - geometric properties

Center of Gravity

- **location of equivalent weight**
- **determined with calculus**

\[W = \int dW \]

Centroid

- **“average” x & y of an area**
- **for a volume of constant thickness**

 \[\Delta W = \gamma t \Delta A \quad \text{where } \gamma \text{ is weight/volume} \]

 \[\text{center of gravity = centroid of area} \]

\[\bar{x} = \frac{\sum(x \Delta A)}{A} \]

\[\bar{y} = \frac{\sum(y \Delta A)}{A} \]
Centroid

- for a line, sum up length

\[
\bar{x} = \frac{\sum (x\Delta L)}{L}
\]

\[
\bar{y} = \frac{\sum (y\Delta L)}{L}
\]

1st Moment Area

- math concept
- the moment of an area about an axis

\[
Q_x = \bar{y}A
\]

\[
Q_y = \bar{x}A
\]

Symmetric Areas

- symmetric about an axis
- symmetric about a center point
- mirrored symmetry

Composite Areas

- made up of basic shapes
- areas can be negative
- (centroids can be negative for any area)
Basic Procedure
1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table
5. Fill in table
6. Sum necessary columns
7. Calculate \hat{x} and \hat{y}

<table>
<thead>
<tr>
<th>Component</th>
<th>Area</th>
<th>\bar{x}</th>
<th>\bar{y}</th>
<th>$\bar{y}A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Area Centroids
• Figure A.1 – pg 598

Moments of Inertia
• 2nd moment area
 – math concept
 – area x (distance)2
• need for behavior of
 – beams
 – columns

Moment of Inertia
• about any reference axis
• can be negative

$$I_y = \sum x_i^2 \Delta A = \int x^2 dA$$

$$I_x = \sum y_i^2 \Delta A = \int y^2 dA$$

(or $I_{x-x} = \sum z^2 a$)
• resistance to bending and buckling
Moment of Inertia

- same area moved away a distance
 - larger I

![Image of Moment of Inertia](image1)

Polar Moment of Inertia

- for roundish shapes
- uses polar coordinates (r and θ)
- resistance to twisting

$$J_o = \int r^2 dA$$

![Image of Polar Moment of Inertia](image2)

Radius of Gyration

- measure of inertia with respect to area

$$r_x = \sqrt{\frac{I_x}{A}}$$

![Image of Radius of Gyration](image3)

Parallel Axis Theorem

- can find composite I once composite centroid is known (basic shapes)

$$I = I_o + Az^2 = \bar{I}_x + Ad_y^2$$

$$I = \sum \bar{I} + \sum Ad^2$$

$$\bar{I} = I - Ad^2$$

![Image of Parallel Axis Theorem](image4)
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with A, \bar{x}, \bar{y}A, \bar{I}’s, d’s, and Ad^2’s
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum I’s and Ad2’s

\[d_x = \hat{x} - \bar{x} \]
\[d_y = \hat{y} - \bar{y} \]

Area Moments of Inertia

- Figure A.11 – pg. 611: (bars refer to centroid)
 - x, y
 - x’, y’
 - C