moment of inertia of an area
Moments of Inertia

• 2nd moment area
 – math concept
 – area x (distance)^2

• need for behavior of
 – beams
 – columns
Moment of Inertia

- about any reference axis
- can be negative

\[I_y = \int x^2 \, dA \]
\[I_x = \int y^2 \, dA \]

- resistance to bending and buckling
Moment of Inertia

• same area moved away a distance – larger I
Polar Moment of Inertia

• for round-ish shapes
• uses polar coordinates \((r \text{ and } \theta)\)
• resistance to twisting

\[
J_o = \int r^2 \, dA
\]
Radius of Gyration

• measure of inertia with respect to area

\[r_x = \sqrt{\frac{I_x}{A}} \]
Parallel Axis Theorem

• can find composite \(I \) once composite centroid is known (basic shapes)

\[
I_x = I_{cx} + Ad_y^2
= \bar{I}_x + Ad_y^2
\]

\[
I = \sum \bar{I} + \sum Ad^2
\]

\[
\bar{I} = I - Ad^2
\]
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with A, \bar{x}, $\bar{x}A$, \bar{y}, $\bar{y}A$, \bar{I}’s, d’s, and Ad^2’s
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum \bar{I}’s and Ad^2’s

\[(d_x = \hat{x} - \bar{x}) \]
\[(d_y = \hat{y} - \bar{y}) \]
Area Moments of Inertia

- Table 7.2 – pg. 252: (bars refer to centroid)
 - x, y
 - x', y'
 - C

<table>
<thead>
<tr>
<th>Shape</th>
<th>I_x</th>
<th>I_y</th>
<th>J_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>$\frac{1}{12}bh^3$</td>
<td>$\frac{1}{12}b'h^3$</td>
<td>$\frac{1}{2}bh(b^2 + h^2)$</td>
</tr>
<tr>
<td>Triangle</td>
<td>$\frac{1}{2}bh^3$</td>
<td>$\frac{1}{2}b'h^3$</td>
<td></td>
</tr>
<tr>
<td>Circle</td>
<td>$\frac{1}{4}\pi r^4$</td>
<td>$\frac{1}{2}\pi r^4$</td>
<td></td>
</tr>
</tbody>
</table>