Architectural Structures I: Statics and Strength of Materials
ENDS 231
Dr. Anne Nichols
Spring 2008

lecture sixteen

elasticity & strain
Deformations

- materials deform
- axially loaded materials change length
- normal stress is load per unit area
- STRAIN:
 - change in length over length
 - UNITLESS

\[\varepsilon = \frac{\delta}{L} \]
Shearing Strain

- deformations with shear
- parallelogram
- change in angles
- stress: τ
- strain: γ
 - unitless (radians)

$$\gamma = \frac{\delta_s}{L} = \tan \phi \approx \phi$$
Shearing Strain

- deformations with torsion
- twist
- change in angle of line

stress: \(\tau \)

strain: \(\gamma = \frac{\rho \phi}{L} \)

- unitless (radians)
Load and Deformation
• for stress, need P & A
• for strain, need δ & L
 – how?
 – TEST with load and measure
 – plot P/A vs. ε
Material Behavior

- every material has its own response
 - 10,000 psi
 - $L = 10 \text{ in}$
 - Douglas Fir vs. steel?

Figure 5.20 Stress-strain diagram for various materials.
Behavior Types

- ductile - “necking”
- true stress
 \[f = \frac{P}{A} \]
- engineering stress
 \[f = \frac{P}{A_o} \]
Behavior Types

• brittle

• semi-brittle
Stress to Strain

• important to us in $f-\varepsilon$ diagrams:
 – straight section
 – LINEAR-ELASTIC
 – recovers shape (no permanent deformation)

Figure 5.20 Stress-strain diagram for various materials.
Hooke’s Law

- straight line has constant slope
- Hooke’s Law

\[f = E \cdot \varepsilon \]

- \(E \)
 - Modulus of elasticity
 - Young’s modulus
 - units just like stress
Stiffness

- ability to resist strain

- steels
 - same E
 - different yield points
 - different ultimate strength

Figure 5.20 Stress-strain diagram for various materials.
Isotropy & Anisotropy

• **ISOTROPIC**
 – materials with \(E \) **same** at any direction of loading
 – ex. steel

• **ANISOTROPIC**
 – materials with **different** \(E \) at any direction of loading
 – ex. wood is **orthotropic**
Elastic, Plastic, Fatigue

- elastic springs back
- plastic has permanent deformation
- fatigue caused by reversed loading cycles
Plastic Behavior

- ductile

Figure 5.22 Stress-strain diagram for mild steel (A36) with key points highlighted.
Lateral Strain

- or "what happens to the cross section with axial stress"

\[\varepsilon_x = \frac{f_x}{E} \]

\[f_y = f_z = 0 \]

- strain in lateral direction
 - negative
 - equal for isometric materials

\[\varepsilon_y = \varepsilon_z \]
Poisson’s Ratio

- constant relationship between longitudinal strain and lateral strain

\[
\mu = -\frac{\text{lateral strain}}{\text{axial strain}} = -\frac{\varepsilon_y}{\varepsilon_x} = -\frac{\varepsilon_z}{\varepsilon_x}
\]

\[
\varepsilon_y = \varepsilon_z = -\frac{\mu f_x}{E}
\]

- sign! \(0 < \mu < 0.5 \)
Calculating Strain

- **from Hooke’s law**
 \[f = E \cdot \epsilon \]

- **substitute**
 \[\frac{P}{A} = E \cdot \frac{\delta}{L} \]

- **get** \(\Rightarrow \)
 \[\delta = \frac{PL}{AE} \]
Orthotropic Materials

- non-isometric
- directional values of E and μ

- ex:
 - plywood
 - laminates
 - polymer composites
Stress Concentrations

- why we use f_{ave}
- increase in stress at changes in geometry
 - sharp notches
 - holes
 - corners

Figure 5.35 Stress trajectories around a hole.
Maximum Stresses

- if we need to know where $\text{max } f$ and f_v happen:

\[\theta = 0^\circ \rightarrow \cos \theta = 1 \]
\[f_{\text{max}} = \frac{P}{A_o} \]

\[\theta = 45^\circ \rightarrow \cos \theta = \sin \theta = \sqrt{0.5} \]
\[f_{v\text{-max}} = \frac{P}{2A_o} = \frac{f_{\text{max}}}{2} \]
Maximum Stresses

Fig. 2-37 Shear failure along a 45° plane of a wood block loaded in compression

Fig. 2-38 Slip bands (or Lüders’ bands) in a polished steel specimen loaded in tension
Design of Members

• beyond allowable stress...
• materials aren’t uniform 100% of the time
 – ultimate strength or capacity to failure may be different and some strengths hard to test for

• RISK & UNCERTAINTY

\[f_u = \frac{P_u}{A} \]
Factor of Safety

- accommodate uncertainty with a safety factor:

\[
\text{allowable load} = \frac{\text{ultimate load}}{F.S}
\]

- with linear relation between load and stress:

\[
F.S = \frac{\text{ultimate load}}{\text{allowable load}} = \frac{\text{ultimate stress}}{\text{allowable stress}}
\]
Load and Resistance Factor Design

- loads on structures are
 - not constant
 - can be more influential on failure
 - happen more or less often
 - UNCERTAINTY

\[R_u = \gamma_D R_D + \gamma_L R_L \leq \phi R_n \]

- \(\phi \) - resistance factor
- \(\gamma \) - load factor for (D)ead & (L)ive load