Design for Strength +...

- **strength design**
 - forces & material

- **serviceability**
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding
Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

\[
\frac{1}{R} = \frac{M}{EI}
\]

\[
curvature = \frac{M(x)}{EI}
\]

\[
\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx
\]

\[
\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx
\]
Deflected Shape & $M(x)$

- $-M(x)$ gives shape indication
- boundary conditions must be met
Boundary Conditions

- at pins, rollers, fixed supports: $y = 0$
- at fixed supports: $\theta = 0$
- at inflection points from symmetry: $\theta = 0$
- y_{max} at $\frac{dy}{dx} = 0$
Superpositioning

- if w can be superpositioned
 - θ & y can
 - elastic range only!
Deflection Limits

- based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

• lateral buckling caused by compressive forces at top coupled with insufficient rigidity
• can occur at low stress levels
• stiffen, brace or bigger I_y
Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - “crippling”
Local Buckling

- flange
- web
Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

(a) Shear Failure
(b) Shear Buckling
Shear in Web

- plate girders and stiffeners
Beam Design

1. **Know** F_{all} **for the material or**
 F_U **for LRFD**

2. **Draw** V & M, **finding** M_{max}

3. **Calculate** $S_{req'd}$
 \[
 S_{req'd} = \left(f_b \leq F_b\right)
 \]

4. **Determine** section size
 \[
 S = \frac{bh^2}{6}
 \]
Beam Design

4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal

- \(f_v \leq F_v \)
- \(W \) and rectangles
 \[
 f_{v_{\text{max}}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}
 \]
- thin walled sections
 \[
 f_{v_{\text{max}}} = \frac{VQ}{Ib}
 \]
Beam Design

7. Provide adequate bearing area at supports

\[f_p = \frac{P}{A} \leq F_p \]
Beam Design

8. Evaluate torsion

\[f_v \leq F_v \]

- circular cross section

\[f_v = \frac{T \rho}{J} \]

- rectangular

\[f_v = \frac{T}{c_1 ab^2} \]

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>\infty</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Beam Design

9. how to read charts

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load = \(w l \)

\[R = V \quad = \frac{wl}{2} \]

\[V_x \quad = w\left(\frac{l}{2} - x\right) \]

\[M_{\text{max. }} \quad \text{(at center)} \quad = \frac{wl^2}{8} \]

\[M_x \quad = \frac{wx}{2} \left(l - x\right) \]

\[\Delta_{\text{max.}} \quad \text{(at center)} \quad = \frac{5wl^4}{384EI} \]

\[\Delta_x \quad = \frac{wx}{24EI} \left(l^3 - 2lx^2 + x^3\right) \]