Steel Connections: bolts, welds & tension members
Connections

• **needed to:**
 – support beams by columns
 – connect truss members
 – splice beams or columns

• **transfer load**

• **subjected to**
 – tension or compression
 – shear
 – bending
Bolts

- bolted steel connections
Welds

- welded steel connections
Fasteners

- wood connections
Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture
Bolted Connection Design

- **ASD steel**
 - shear:
 \[f_v \leq F_v \]
 - bolt strengths
 - single & double
- **Bolt types**
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X

Table: Shear

<table>
<thead>
<tr>
<th>Nominal Diameter d, in.</th>
<th>3/8</th>
<th>7/32</th>
<th>1/4</th>
<th>1/2</th>
<th>3/4</th>
<th>1</th>
<th>1 1/4</th>
<th>1 1/2</th>
<th>1 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (Based on Normal Diameter in.)</td>
<td>in.²</td>
<td>3/8</td>
<td>7/32</td>
<td>1/4</td>
<td>1/2</td>
<td>3/4</td>
<td>1</td>
<td>1 1/4</td>
<td>1 1/2</td>
</tr>
<tr>
<td>3/8</td>
<td>STD</td>
<td>0.36</td>
<td>0.19</td>
<td>0.14</td>
<td>0.18</td>
<td>0.25</td>
<td>0.32</td>
<td>0.46</td>
<td>0.61</td>
</tr>
<tr>
<td>3/8</td>
<td>A325</td>
<td>0.46</td>
<td>0.28</td>
<td>0.22</td>
<td>0.29</td>
<td>0.41</td>
<td>0.55</td>
<td>0.82</td>
<td>1.09</td>
</tr>
<tr>
<td>3/8</td>
<td>A490</td>
<td>0.56</td>
<td>0.32</td>
<td>0.25</td>
<td>0.34</td>
<td>0.49</td>
<td>0.68</td>
<td>0.97</td>
<td>1.30</td>
</tr>
<tr>
<td>3/8</td>
<td>A502/1</td>
<td>0.66</td>
<td>0.39</td>
<td>0.31</td>
<td>0.42</td>
<td>0.61</td>
<td>0.86</td>
<td>1.25</td>
<td>1.68</td>
</tr>
<tr>
<td>3/8</td>
<td>A502-2</td>
<td>0.77</td>
<td>0.44</td>
<td>0.36</td>
<td>0.48</td>
<td>0.70</td>
<td>1.01</td>
<td>1.47</td>
<td>2.02</td>
</tr>
<tr>
<td>3/8</td>
<td>A36</td>
<td>1.06</td>
<td>0.60</td>
<td>0.48</td>
<td>0.66</td>
<td>0.96</td>
<td>1.38</td>
<td>2.00</td>
<td>2.90</td>
</tr>
<tr>
<td>3/8</td>
<td>X-STD</td>
<td>1.33</td>
<td>0.76</td>
<td>0.60</td>
<td>0.84</td>
<td>1.22</td>
<td>1.78</td>
<td>2.63</td>
<td>3.90</td>
</tr>
</tbody>
</table>
Bolted Connection Design

- ASD steel
 - bearing:
 - bolts rarely fail by bearing
 - other part fails first
Tension Members

- steel members can have holes
- reduced area
- increased stress
Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
ASD – Tension Members

- non-pin connected members:
 - $F_t = 0.60F_y$ on gross area
 - $F_t = 0.50F_u$ on net area

- pin connected members:
 - $F_t = 0.45F_y$ on net area

- threaded rods of approved steel:
 - $F_t = 0.33F_u$ on major diameter
 - (for static loading only)
LRFD - Tension Members

- limit states for failure

 \[P_u \leq \phi_t P_n \]

 1. yielding
 \[\phi_t = 0.9 \quad P_n = F_y A_g \]

 2. rupture*
 \[\phi_t = 0.75 \quad P_n = F_u A_e \]

\[A_g - \text{gross area} \]

\[A_e - \text{effective net area} \]

\[F_u - \text{tensile strength of the steel (ultimate)} \]
Welded Connection Design

• considerations
 – shear stress
 – yielding
 – rupture
Welded Connection Design

- **weld terms**
 - butt weld
 - fillet weld
 - plug weld
 - throat

- **weld materials**
 - E60XX
 - E70XX
 - $F_{EXX} = 70$ ksi

<table>
<thead>
<tr>
<th>Material Thickness of Thicker Part Joined, in. (mm)</th>
<th>Minimum Size of Fillet Weld[a] in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To $\frac{1}{4}$ (6) Inclusive</td>
<td>$\frac{1}{8}$ (3)</td>
</tr>
<tr>
<td>Over $\frac{1}{4}$ (6) to $\frac{1}{2}$ (13)</td>
<td>$\frac{1}{8}$ (5)</td>
</tr>
<tr>
<td>Over $\frac{1}{2}$ (13) to $\frac{3}{4}$ (19)</td>
<td>$\frac{1}{8}$ (6)</td>
</tr>
<tr>
<td>Over $\frac{3}{4}$ (19)</td>
<td>$\frac{3}{8}$ (8)</td>
</tr>
</tbody>
</table>

[a] Leg dimension of fillet welds. Single pass welds must be used.
[b] See Section J2.25 for maximum size of fillet welds.
Welded Connection Design

- **ASD**
 - shear \(f_v \leq F_v \)
 - \(F_v = 0.30F_{\text{weld}} \)
 - throat
 - \(T = 0.707 \times \text{weld size} \)
 - area
 - \(A = T \times \text{length of weld} \)
 - weld metal generally stronger than base metal (ex. \(F_y = 50 \text{ ksi} \))
Framed Beam Connections

• angles
 – bolted
 – welded
Framed Beam Connections

• terms
 – coping
Framed Beam Connections

- tables for standard bolt holes & spacings
- \(n = \# \) bolts
- angle leg thickness
- length needed

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Bolt Shear(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt Type</td>
<td>A325-N</td>
</tr>
<tr>
<td>(F_s, \text{ Ksi})</td>
<td>21.0</td>
</tr>
<tr>
<td>Bolt Dia, (d) in.</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>Angle Thickness</td>
<td>(\frac{1}{8})</td>
</tr>
<tr>
<td>(L) in.</td>
<td>(L') in.</td>
</tr>
<tr>
<td>25%</td>
<td>10</td>
</tr>
<tr>
<td>25%</td>
<td>9</td>
</tr>
<tr>
<td>25%</td>
<td>8</td>
</tr>
<tr>
<td>22%</td>
<td>7</td>
</tr>
<tr>
<td>19%</td>
<td>6</td>
</tr>
<tr>
<td>15%</td>
<td>5</td>
</tr>
<tr>
<td>11%</td>
<td>4</td>
</tr>
<tr>
<td>(^)</td>
<td></td>
</tr>
</tbody>
</table>
Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling
Beam Connections

- block shear rupture
- tension rupture