Structural Loads

- gravity acts on mass \((F=m\cdot g) \)
- forces
 - acts at a point
 - ie. joist on beam
 - acts along a “line”
 - ie. floor on a beam
 - acts over an area
 - ie. people, books, snow on roof or floor

Load Tracing

- how loads are transferred
 - usually starts at top
 - distributed by supports as actions
 - distributed by tributary areas
Load Tracing

- **tributary load**
 - think of water flow
 - “concentrates” load of area into center

\[
w = \left(\frac{\text{load}}{\text{area}} \right) \times (\text{tributary width})
\]

Load Tracing

Alamillo Bridge
Calatrava 1992

Load Paths

(a) FBD—decking.
(b) FBD—joists.
(c) FBD—beams.
(d) FBD—girder.

Patcenter
Rogers 1986

Figure 3.5: Patcenter, load path diagram.

Figure 3.12: Alamillo bridge, load path diagram.
Load Paths

• wall systems

• openings & pilasters

• foundations

• deep foundations
Concentrated Loads

- statically determinate beam supports
 - simple
 - overhang
 - cantilever

Distributed Loads

- continuous beams
 - statically indeterminate
 - floors
Equivalent Force Systems

- replace forces by resultant
- place resultant where $M = 0$
- using calculus and area centroids

$$W = \int_0^L w \, dx = \int dA_{\text{loading}} = A_{\text{loading}}$$

Area Centroids

- Table 7.1 – pg. 242

<table>
<thead>
<tr>
<th>Shape</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular area</td>
<td>$b/3$</td>
<td>$h/3$</td>
</tr>
<tr>
<td>Quarter-circular area</td>
<td>ar</td>
<td>ar</td>
</tr>
<tr>
<td>Semicircular area</td>
<td>0</td>
<td>$ar/3$</td>
</tr>
<tr>
<td>Semi-parabolic area</td>
<td>$3a/8$</td>
<td>$3a/8$</td>
</tr>
<tr>
<td>Parabolic area</td>
<td>0</td>
<td>$3a/8$</td>
</tr>
</tbody>
</table>

Load Areas

- area is width x “height” of load
- w is load per unit length
- W is total load