Method 1: Equilibrium

- cut sections at important places
- plot V & M

Method 2: Semigraphical

- by knowing
 - area under loading curve = change in V
 - area under shear curve = change in M
 - concentrated forces cause “jump” in V
 - concentrated moments cause “jump” in M

\[
V_D - V_C = - \int_{x_C}^{x_D} w\,dx \quad M_D - M_C = \int_{x_C}^{x_D} V\,dx
\]
Method 2: Semigraphical

- M_{max} occurs where $V = 0$ (calculus)

\[V + M \text{ no area} \]

\[M \text{ } L \]

Curve Relationships

- Integration of functions
- Line with 0 slope, integrates to sloped

\[\text{ } \]

- Ex: load to shear, shear to moment

\[y \quad x \quad \Rightarrow \quad y \quad x \]

\[y \quad x \quad \text{parabola, integrates to 3rd order curve} \]

- Ex: load to shear, shear to moment

\[y \quad x \quad \Rightarrow \quad y \quad x \]
Basic Procedure

1. **Find reaction forces & moments**
 - Plot axes, underneath beam load diagram

2. **Starting at left**
3. **Shear is 0 at free ends**
4. **Shear jumps with concentrated load**
5. **Shear changes with area under load**

Triangle Geometry

- **slope of V is w (w:1)**

\[
x \cdot w = V_A \\
x = \frac{V_A}{w}
\]

Parabolic Shapes

- **cases**

 - **up fast, then slow**
 - **up slow, then fast**
 - **down fast, then slow**
 - **down slow, then fast**
Tools

• software & spreadsheets help
• http://www.rekenwonder.com/atlas.htm

Tools – Multiframe4D

• frame window
 – define beam members
 – select points, assign supports
 – select members, assign section
• load window
 – select point or member, add point or distributed loads

Tools – Multiframe4D

• in computer lab

• to run analysis choose
 – case menu
 • Analyse...
 – Linear (1st order elastic)
• plot
 – choose options
 – double click (all)
• results
 – choose options