Mechanics of Materials

• external loads and their effect on deformable bodies
• use it to answer question if structure meets requirements of
 – stability and equilibrium
 – strength and stiffness
• other principle building requirements
 • economy, functionality and aesthetics

Knowledge Required

• material properties
• member cross sections
• ability of a material to resist breaking
• structural elements that resist excessive
 – deflection
 – deformation

Figure 2.3 (a) An example of tension on a cantilever beam.
Problem Solving

1. **STATICS:**
 - equilibrium of external forces, internal forces, stresses

2. **GEOMETRY:**
 - cross section properties, deformations and conditions of geometric fit, strains

3. **MATERIAL PROPERTIES:**
 - stress-strain relationship for each material obtained from testing

Stress

- stress is a term for the intensity of a force, like a pressure
- internal or applied
- force per unit area

\[
\text{stress} = f = \frac{P}{A}
\]

Design

- materials have a critical stress value where they could break or yield
 - ultimate stress
 - yield stress
 - compressive stress
 - fatigue strength
 - (creep & temperature)

Design (cont)

- we’d like
 \[
 f_{\text{actual}} << F_{\text{allowable}}
 \]
- stress distribution may very: average
- uniform distribution exists IF the member is loaded axially (concentric)
Scale Effect
- model scale
 - material weights, small areas
- structural scale
 - much more material weight, bigger areas
- ratio is not constant:
 \[\frac{\gamma L^3}{L^2} = \gamma L \]

Strain
- materials deform
- axially loaded materials change length
- bending materials deflect
- STRAIN:
 - change in length over length
 \[\text{strain} = \varepsilon = \frac{\Delta L}{L} \]

Normal Stress
- normal stress is normal to the cross section
 - stressed area is perpendicular to the load
 \[f_{1\text{ or }c} = \frac{P}{A} \]

Shear Stress
- stress parallel to a surface
 \[f_v = \frac{P}{A} = \frac{P}{td} \]

Figure 5.7 Two columns with the same load, different stress.
Figure 5.10 Shear stress between two glued blocks.
Bearing Stress
- stress on a surface by contact in compression

\[f_p = \frac{P}{A} = \frac{P}{td} \]

Bending Stress
- normal stress caused by bending

\[f_b = \frac{Mc}{I} = \frac{M}{S} \]

Torsional Stress
- shear stress caused by twisting

\[f_v = \frac{T\rho}{J} \]

Structures and Shear
- what structural elements see shear?
 - beams
 - bolts
 - splices
 - slabs
 - footings
 - walls
 - wind
 - seismic loads
Bolts

- connected members in tension cause shear stress

- connected members in compression cause bearing stress

Single Shear

- seen when 2 members are connected

- compression & contact

- projected area

Double Shear

- seen when 3 members are connected

- two areas

\[
f_v = \frac{P}{2A} = \frac{P}{2} = \frac{P}{\pi d^2/4}
\]

Bolt Bearing Stress

- compression & contact

- projected area

\[
f_p = \frac{P}{A_{projected}} = \frac{P}{td}
\]