Design Methods

- **know**
 - loads or lengths

- **select**
 - section or load
 - adequate for strength and no buckling

Allowable Stress Design (ASD)

- **AICS 9th ed**

 \[
 F_a = \frac{f_{\text{critical}}}{F.S.} = \frac{12\pi^2 E}{23(KL/r)^2}
 \]

- **slenderness ratio**
 \[
 \frac{KL}{r}
 \]

- for \(kl/r \geq C_c \)
 - 126.1 with \(F_y = 36 \) ksi
 - 107.0 with \(F_y = 50 \) ksi

\(C_c \) and Euler’s Formula

- **KL/r < C_c**
 - short and stubby
 - parabolic transition

- **KL/r > C_c**
 - Euler’s relationship
 - < 200 preferred

\[
C_c = \sqrt{\frac{2\pi^2 E}{F_y}}
\]
Cc and Euler's Formula

![Euler's Equation Graph]

\[
F_a = \left[1 - \frac{(KL/r)^2}{2C_c^2} \right] \frac{F_y}{F.S.}
\]

- where

\[
F.S. = \frac{5}{3} + \frac{3(KL/r)}{8C_c} - \frac{(KL/r)^3}{8C_c^3}
\]

Procedure for Analysis

1. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
2. find \(F_a \) from Table 10.1 or 10.2
 - pp. 361 - 364
3. compute \(P_{\text{allowable}} = F_a \cdot A \)
 - or find \(f_{\text{actual}} = P/A \)
4. is \(P \leq P_{\text{allowable}} \) (or is \(f_{\text{actual}} \leq F_a \)?)
 - yes: ok
 - no: overstressed and no good

Short / Intermediate

- \(L_e/r < C_c \)

Procedure for Design

1. guess a size (pick a section)
2. calculate KL/r
 - biggest of KL/r with respect to x axes and y axis
3. find \(F_a \) from Table 10.1 or 10.2
 - pp. 361 - 364
4. compute \(P_{\text{allowable}} = F_a \cdot A \)
 - or find \(f_{\text{actual}} = P/A \)
Procedure for Design (cont’d)

5. is \(P \leq P_{\text{allowable}} \) (or is \(f_{\text{actual}} \leq F_a \)?)
 - yes: ok
 - no: pick a bigger section and go back to step 2.

6. check design efficiency
 - percentage of stress = \(\frac{P_{\text{actual}}}{P_{\text{allowable}}} \cdot 100\% \)
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.

Column Charts

Wood Columns

- slenderness ratio = \(\frac{L}{d_{\text{min}}} = \frac{L}{d_1} \)
- \(d_1 = \text{smaller dimension} \)
- \(\frac{L}{d_{\text{min}}} \leq 50 \) (max)

\[f_c = \frac{P}{A} \leq F'_c \]

- where \(F'_c \) is the allowable compressive strength parallel to the grain
Allowable Wood Stress

\[F'_c = F_c (C_D)(C_M)(C_t)(C_F)(C_p) \]

- where:
 - \(F_c \): compressive strength parallel to grain
 - \(C_D \): load duration factor
 - \(C_M \): wet service factor (1.0 dry)
 - \(C_t \): temperature factor
 - \(C_F \): size factor
 - \(C_p \): column stability factor

Strength Factors

- wood properties and load duration, \(C_D \)
 - short duration
 - higher loads
 - normal duration
 - > 10 years

- stability, \(C_p \)
 - combination curve - tables

\[F'_c = \left(F_c C_D \right)C_p = \left(F_c C_D \right)C_p \]

\(C_p \) Charts

<table>
<thead>
<tr>
<th>Column Stability Factor (C_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Values})</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.10</td>
</tr>
<tr>
<td>0.15</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.30</td>
</tr>
<tr>
<td>0.35</td>
</tr>
<tr>
<td>0.40</td>
</tr>
<tr>
<td>0.45</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>0.55</td>
</tr>
<tr>
<td>0.60</td>
</tr>
<tr>
<td>0.65</td>
</tr>
</tbody>
</table>
...
Procedure for Analysis

1. calculate $\frac{L_e}{d_{min}}$
2. obtain F'_{c}
 - compute $F_{cE} = \frac{K_{cE} E}{\left(\frac{L_e}{d}\right)^2}$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
3. compute $F_c^* \approx F_c C_D$
4. calculate $\frac{F_{cE}}{F_c^*}$ and get C_p (table 14)
5. calculate $F_{c}'' = F_c^* C_p$

Procedure for Analysis (cont’d)

6. compute $P_{allowable} = F'_{c} A$
 - or find $f_{actual} = P/A$
7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_{c}$?)
 - yes: OK
 - no: overstressed & no good

Procedure for Design

1. guess a size (pick a section)
2. calculate $\frac{L_e}{d_{min}}$
3. obtain F'_{c}
 - compute $F_{cE} = \frac{K_{cE} E}{\left(\frac{L_e}{d}\right)^2}$
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
4. compute $F_c^* \approx F_c C_D$
5. calculate $\frac{F_{cE}}{F_c^*}$ and get C_p (table 14)
6. calculate $F_{c}'' = F_c^* C_p$

Procedure for Design (cont’d)

6. compute $P_{allowable} = F'_{c} A$
 - or find $f_{actual} = P/A$
7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_{c}$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.
LRFD design

- limit states for failure \[P_u \leq \phi_c P_n \]

\[\phi_c = 0.85 \quad P_n = F_{cr} A_g \]

1. yielding \[\frac{\lambda_c}{\sqrt{r/E}} \leq \phi \]

\[\lambda_c = \frac{K_l}{r} \sqrt{\frac{F_y}{E}} \frac{L_e}{r} \]

2. buckling \[\lambda_c > 1.5 \]

\[\lambda_c - \text{column slenderness parameter} \]

\[A_g - \text{gross area} \]

Compact Sections

- flanges continuously connected to the web or webs and width-thickness ratios < limiting values

 - no local buckling of flange or web

 - for \[\frac{\lambda_c}{\sqrt{r/E}} \leq 1.5 \]

\[F_{cr} = 0.658 \frac{x^2}{\lambda_c^2} F_y \]

 - for \[\frac{\lambda_c}{\sqrt{r/E}} > 1.5 \]

\[F_{cr} = \frac{0.877}{\lambda_c^2} F_y \]

Column Charts