Rigid Frames

- rigid frames have no pins
- frame is all one body
- joints transfer moments and shear
- typically statically indeterminate
- types
 - portal
 - gable

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter
- very sensitive to settling
Rigid Frames
• resists lateral loadings
• shape depends on stiffness of beams and columns
• 90° maintained

Rigid Frames
• staggered truss
 – rigidity
 – clear stories

Rigid Frames
• connections
 – steel
 – concrete

Braced Frames
• pin connections
• bracing to prevent lateral movements
Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - X
 - K or chevron
 - shear walls

Shear Walls

- resist lateral load in plane with wall

Rigid Frame Analysis

- members see
 - shear
 - axial force
 - bending
- V & M diagrams
 - plot on “outside”

Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- “turn” member like beam
- draw V & M
Rigid Frame Analysis

- **FBD & M**
 - opposite end reactions at joints

Rigid Frame Design

- **loads and combinations**
 - usually uniformly distributed gravity loads
 - worst case for largest moments...
 - wind direction can increase moments

Rigid Frame Design

- **frames & floors**
 - rigid frame can have slab floors or slab with connecting beams
- **other**
 - slabs or plates on columns

- **floors – plates & slabs**
 - one-way behavior
 - side ratio > 1.5
 - “strip” beam
 - two-way behavior
 - more complex