moment of inertia of an area
Moments of Inertia

• 2nd moment area
 – math concept
 – area \times (distance)^2

• need for behavior of
 – beams
 – columns
Moment of Inertia

• about any reference axis
• can be negative

\[I_y = \int x^2 \, dA \]
\[I_x = \int y^2 \, dA \]

• resistance to bending and buckling
Moment of Inertia

• larger area away for same distance
 – larger I
Polar Moment of Inertia

- for round-ish shapes
- uses polar coordinates (r and θ)
- resistance to twisting

\[J_o = \int r^2 \, dA \]
Radius of Gyration

- measure of inertia with respect to area

\[r_x = \sqrt{\frac{I_x}{A}} \]
Parallel Axis Theorem

- can find composite I once composite centroid is known (basic shapes)

\[I_x = I_{cx} + Ad_y^2 \]
\[= \overline{I}_x + Ad_y^2 \]

\[I = \sum \overline{I} + \sum Ad^2 \]

\[\overline{I} = I - Ad^2 \]
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with A, \bar{x}, $\bar{x}A$, \bar{y}, $\bar{y}A$, \bar{I}’s, d’s, and Ad^2’s
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum \bar{I}’s and Ad^2’s

\[
(d_x = \hat{x} - \bar{x}) \\
(d_y = \hat{y} - \bar{y})
\]
Area Moments of Inertia

- Table 7.2 – pg. 252: (bars refer to centroid)
 - x, y
 - x', y'
 - C

- Rectangle
 - $I_x = \frac{1}{12}bh^3$
 - $I_y = \frac{1}{12}b'h^3$
 - $I_c = \frac{1}{2}bh(b^2 + h^2)$

- Triangle
 - $I_x = \frac{1}{24}bh^3$
 - $I_c = \frac{1}{2}bh^3$

- Circle
 - $I_x = I_y = \frac{1}{4\pi}r^4$
 - $J_o = \frac{1}{2\pi}r^4$