loads, forces and vectors
Structural Design

- planning
- preliminary structural configuration
- determination of loads
- preliminary member selection
- analysis
- evaluation
- design revision
- final design
Structural Loads

- **STATIC and DYNAMIC**
- dead load
 - static, fixed, includes building weight, fixed equipment
- live load
 - transient and moving loads (including occupants), snowfall
Structural Loads

• wind loads
 – dynamic, wind pressures treated as lateral static loads on walls, up or down loads on roofs

• earthquake loads
 – seismic, movement of ground

• impact loads
 – rapid, energy loads
Force

- “action of one body on another that affects the state of motion or rest of the body”
- Newton’s 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line
Force Characteristics

- **applied at a point**
- **magnitude**
 - *Imperial units*: lb, k (kips)
 - *SI units*: N (newtons), kN
- **direction**

(tail) (tip)
Forces on Rigid Bodies

- for statics, the bodies are ideally rigid
- can translate and rotate
- internal forces are
 - in bodies
 - between bodies (connections)
- external forces act on bodies
Transmissibility

- the force stays on the same line of action
- truck can’t tell the difference

- only valid for EXTERNAL forces
Force System Types

• collinear

Collinear—All forces acting along the same straight line.
Figure 2.17(a) Particle or rigid body.
Force System Types

- coplanar
Force System Types

- space

Column loads in a concrete building.

Noncoplanar, parallel—All forces are parallel to each other, but not all lie in the same plane.

Figure 2.17(c) Rigid bodies.

One component of a three-dimensional space frame.

Noncoplanar, concurrent—All forces intersect at a common point but do not all lie in the same plane.

Figure 2.17(f) Particle or rigid bodies.

Array of forces acting simultaneously on a house.

Noncoplanar, nonconcurrent—All forces are skewed.

Figure 2.17(g) Rigid bodies.
Adding Vectors

• **graphically**
 – parallelogram law
 • diagonal
 • *long for 3 or more vectors*

 – **tip-to-tail**
 • *more convenient with lots of vectors*
Force Components

- convenient to resolve into 2 vectors
- at right angles
- in a “nice” coordinate system

\[F_x = F \cos \theta \]
\[F_y = F \sin \theta \]
\[F = \sqrt{F_x^2 + F_y^2} \]
\[\tan \theta = \frac{F_y}{F_x} \]
Trigonometry

- F_x is negative
 - 90° to 270°
- F_y is negative
 - 180° to 360°
- \tan is positive
 - quads I & III
- \tan is negative
 - quads II & IV
Component Addition

- find all x components
- find all y components
- find sum of x components, R_x (resultant)
- find sum of y components, R_y

\[R = \sqrt{R_x^2 + R_y^2} \]

\[\tan \theta = \frac{R_y}{R_x} \]
Alternative Trig for Components

- doesn’t relate angle to axis direction
- ϕ is “small” angle between F and \textit{EITHER} F_x or F_y
- no sign out of calculator!
- have to choose \textit{RIGHT} trig function, resulting direction (sign) and component axis