ARCHITECTURAL STRUCTURES I:
STATICS AND STRENGTH OF MATERIALS
ENDS 231
DR. ANNE NICHOLS
SPRING 2007
lecture twenty five

eccentric loading:
beam-columns
Centric & Eccentric Loading

- **centric**
 - allowable stress from strength or buckling
- **eccentric**
 - combined stresses
Eccentric Loading

- axial + bending

\[f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I} \]

\[M = P \cdot e \]

- design

\[f_{\text{max}} \leq F_{cr} = \frac{f_{cr}}{F.S.} \]
Eccentric Loading

- find e such that the minimum stress = 0

$$f_{\min} = \frac{P}{A} - \frac{(Pe)c}{I} = 0$$

- area defined by e from centroid is the kern
Eccentric Loading

– when there is eccentricity in two directions

\[M_1 = P \cdot e_1 \quad M_2 = P \cdot e_2 \]

\[f_{\text{max}} = \frac{P}{A} + \frac{M_1 y}{I} + \frac{M_2 z}{I} \]

– biaxial bending
Stress Limit Conditions

– ASD interaction formula

\[
\frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0
\]

– with biaxial bending

\[
\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \leq 1.0
\]
Stress Limit Conditions

– in reality, as the column flexes, the moment increases

– **P-Δ effect**

\[
\frac{f_a}{F_a} + \frac{f_b \times (\text{Magnification factor})}{F_{bx}} \leq 1.0
\]
Design

- **satisfy**
 - strength
 - stability
- **pick**
 - section
Design

- ASD Steel

\[
\frac{f_a}{F_a} + \frac{C_{mx} f_{bx}}{1 - \frac{f_a}{F'_e}} F_{bx} + \frac{C_{my} f_{by}}{1 - \frac{f_a}{F'_e}} F_{by} \leq 1.0
\]

*\(C_m \) – modification factor for end conditions

\[= 0.6 - 0.4(M_1/M_2) \text{ or } 0.85 \text{ restrained} \]

*\(F'_e \) – allowable buckling strength

*\(() \) term – magnification factor for P-\(\Delta \)
Design

• Wood

\[
\left(\frac{f_c}{F_c'} \right)^2 + \frac{f_{bx}}{F_{bx}' \left[1 - \frac{f_c}{F_{cEx}} \right]} \leq 1.0
\]

() term – magnification factor for P-\(\Delta\)

\(F'_{bx}\) – allowable bending strength
Design

- **LRFD Steel**

- for \(\frac{P_u}{\phi_c P_n} \geq 0.2 \):
 \[
 \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0
 \]

- for \(\frac{P_u}{\phi_c P_n} < 0.2 \):
 \[
 \frac{P_u}{2\phi_c P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0
 \]

\(\phi_c \) - resistance factor for compression = 0.85

\(\phi_b \) - resistance factor for bending = 0.9
Design Steps Knowing Loads

1. assume limiting stress
 - buckling, axial stress, combined stress

2. solve for r, A or S

3. pick trial section

4. analyze stresses

5. section ok?

6. stop when section is ok