steel connections: bolts, welds & tension members
Connections

• **needed to:**
 – support beams by columns
 – connect truss members
 – splice beams or columns

• **transfer load**

• **subjected to**
 – tension or compression
 – shear
 – bending
Bolts

- *bolted steel connections*
Welds

- welded steel connections
Fasteners

- wood connections
Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture
Bolted Connection Design

- **ASD steel**
 - shear: \(f_v \leq F_v \)
 - bolt strengths
 - single & double

- **bolt types**
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X

TABLE: SHEAR

ASNV	Connection Type	Hole Dia.	Lead	\(P_{in} \)	\(P_{out} \)										
3/8	STD	10.6	D	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45
5/8	STD	12.1	D	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45
7/8	STD	15.7	D	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45
1"	STD	21.0	D	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45
1 1/4	STD	30.0	D	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45	0.1	0.45

BOLTS, THREADED PARTS AND RIVETS

Shear

Allowable load in kips
Bolted Connection Design

- **ASD steel**
 - *bearing:*
 - bolts rarely fail by bearing
 - other part fails first

BOLTS AND THREADED PARTS Bearing

Allowable loads in kips

TABLE BEARING

<table>
<thead>
<tr>
<th>Material Thickness</th>
<th>(F_u = 58 , \text{ksi}) Bolt dia.</th>
<th>(F_u = 65 , \text{ksi}) Bolt dia.</th>
<th>(F_u = 70 , \text{ksi}) Bolt dia.</th>
<th>(F_u = 100 , \text{ksi}) Bolt dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{8})</td>
<td>6.5</td>
<td>7.6</td>
<td>9.7</td>
<td>7.3</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>9.8</td>
<td>11.4</td>
<td>13.1</td>
<td>11.0</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>13.1</td>
<td>15.2</td>
<td>17.4</td>
<td>14.6</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>18.3</td>
<td>21.0</td>
<td>23.9</td>
<td>18.9</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>18.6</td>
<td>22.0</td>
<td>26.1</td>
<td>21.9</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>22.8</td>
<td>26.6</td>
<td>30.5</td>
<td>25.6</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>28.1</td>
<td>30.5</td>
<td>34.8</td>
<td>29.3</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>29.4</td>
<td>34.3</td>
<td>39.2</td>
<td>32.9</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>32.5</td>
<td>38.1</td>
<td>43.6</td>
<td>36.3</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>41.5</td>
<td>47.9</td>
<td>53.8</td>
<td>46.9</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>45.7</td>
<td>52.2</td>
<td>59.6</td>
<td>53.5</td>
</tr>
<tr>
<td>(\frac{3}{4})</td>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>60.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>52.2</td>
<td>60.9</td>
<td>69.6</td>
<td>58.5</td>
</tr>
</tbody>
</table>
Tension Members

- steel members can have holes
- reduced area
- increased stress
Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
ASD – Tension Members

- non-pin connected members:
 - $F_t = 0.60F_y$ on gross area
 - $F_t = 0.50F_u$ on net area

- pin connected members:
 - $F_t = 0.45F_y$ on net area

- threaded rods of approved steel:
 - $F_t = 0.33F_u$ on major diameter
 - (for static loading only)
LRFD - Tension Members

- **limit states for failure**
 - 1. **yielding**
 \[P_u \leq \phi_t P_n \]
 \[\phi_t = 0.9 \quad P_n = F_y A_g \]
 - 2. **rupture**
 \[\phi_t = 0.75 \quad P_n = F_u A_e \]

\(A_g \) - gross area
\(A_e \) - effective net area
\(F_u \) - tensile strength of the steel (ultimate)
Welded Connection Design

- shear stress
- yielding
- rupture
Welded Connection Design

• weld terms
 – butt weld
 – fillet weld
 – plug weld
 – throat

• weld materials
 – E60XX
 – E70XX
 \[F_{EXX} = 70 \text{ ksi} \]

![Diagram of weld connections]

TABLE J2.4
Minimum Size of Fillet Welds

<table>
<thead>
<tr>
<th>Material Thickness of Thicker Part Joined, in. (mm)</th>
<th>Minimum Size of Fillet Weld[a] in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To (\frac{1}{4}) (6) Inclusive
Over (\frac{1}{4}) (6) to (\frac{1}{2}) (13)
Over (\frac{1}{2}) (13) to (\frac{3}{4}) (19)
Over (\frac{3}{4}) (19)</td>
<td>(\frac{1}{8}) (3)
(\frac{3}{8}) (5)
(\frac{1}{4}) (6)
(\frac{5}{16}) (8)</td>
</tr>
</tbody>
</table>

[a] Leg dimension of fillet welds. Single pass welds must be used.
[b] See Section J2.25 for maximum size of fillet welds.
Welded Connection Design

- **ASD**
 - shear \(f_v \leq F_v \)
 - \(F_v = 0.30 F_{weld} \)
 - throat
 - \(T = 0.707 \times \text{weld size} \)
 - area
 - \(A = T \times \text{length of weld} \)
 - weld metal generally stronger than base metal (ex. \(F_y = 50 \text{ ksi} \))
Framed Beam Connections

- **angles**
 - bolted
 - welded
Framed Beam Connections

- terms
 - coping
Framed Beam Connections

- tables for standard bolt holes & spacings
- $n = \#$ bolts
- angle leg thickness
- length needed

Framed Beam Connections

Bolted

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Allowable loads in kips</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STAGGERED BOLT ALTERNATE

Note: For $L = 2\frac{1}{2}$ use one half the tabular load value shown for $L = 5\frac{1}{2}$, for the same bolt type, diameter, and thickness.

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Bolt Shear</th>
<th>For bolts in bearing-type connections with standard or slotted holes.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A325-N</td>
</tr>
<tr>
<td>F_c, Ks</td>
<td>21.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Bolt Dia, d, in.</td>
<td>1/8</td>
<td>1/4</td>
</tr>
<tr>
<td>Angle Thickness</td>
<td>1/16</td>
<td>3/32</td>
</tr>
<tr>
<td>L, in.</td>
<td>L', in.</td>
<td>n</td>
</tr>
<tr>
<td>29/31</td>
<td>10</td>
<td>186</td>
</tr>
<tr>
<td>26/28</td>
<td>9</td>
<td>167</td>
</tr>
<tr>
<td>23/25</td>
<td>8</td>
<td>148</td>
</tr>
<tr>
<td>20/22</td>
<td>7</td>
<td>130</td>
</tr>
<tr>
<td>17/19</td>
<td>6</td>
<td>111</td>
</tr>
<tr>
<td>14/16</td>
<td>5</td>
<td>92.8</td>
</tr>
<tr>
<td>11/13</td>
<td>4</td>
<td>74.2</td>
</tr>
<tr>
<td>8/10</td>
<td>3</td>
<td>55.7</td>
</tr>
<tr>
<td>6/8</td>
<td>2</td>
<td>37.2</td>
</tr>
<tr>
<td>4/6</td>
<td>1</td>
<td>18.7</td>
</tr>
</tbody>
</table>

Connections 18
Lecture 26

ENDS 231
Beam Connections

- LRFD provisions
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling
Beam Connections

- block shear rupture
- tension rupture