Design Methods

- **know**
 - loads or lengths
- **select**
 - section or load
 - adequate for strength and no buckling

Allowable Stress Design (ASD)

- **AICS 9th ed**

 \[F_a = \frac{f_{\text{critical}}}{F.S.} = \frac{12\pi^2 E}{23(KL/r)^2} \]

- **slenderness ratio** \(\frac{KL}{r} \)
 - for \(kl/r \geq C_c \)
 - \(126.1 \) with \(F_y = 36 \text{ ksi} \)
 - \(107.0 \) with \(F_y = 50 \text{ ksi} \)

\(C_c \) and Euler’s Formula

- **KL/r < \(C_c \)**
 - short and stubby
 - parabolic transition

- **KL/r > \(C_c \)**
 - Euler’s relationship
 - < 200 preferred

\[
C_c = \sqrt{\frac{2\pi^2 E}{F_y}}
\]
Cc and Euler’s Formula

![Euler's Equation Diagram]

Short / Intermediate

- \(L_e/r < C_c \)

 \[
 F_a = \left[1 - \frac{(KL/r)^2}{2C_c^2} \right] \frac{F_y}{F.S.}
 \]

 - where

 \[
 F.S. = \frac{5}{3} + \frac{3(KL/r)}{8C_c} - \frac{(KL/r)^3}{8C_c^3}
 \]

Procedure for Analysis

1. calculate \(KL/r \)
 - biggest of \(KL/r \) with respect to x axes and y axis
2. find \(F_a \) from Table 10.1 or 10.2
 - pp. 361 - 364
3. compute \(P_{\text{allowable}} = F_a \cdot A \)
 - or find \(f_{\text{actual}} = P/A \)
4. is \(P \leq P_{\text{allowable}} \)? (or is \(f_{\text{actual}} \leq F_a \)?)
 - yes: ok
 - no: overstressed and no good

Procedure for Design

1. guess a size (pick a section)
2. calculate \(KL/r \)
 - biggest of \(KL/r \) with respect to x axes and y axis
3. find \(F_a \) from Table 10.1 or 10.2
 - pp. 361 - 364
4. compute \(P_{\text{allowable}} = F_a \cdot A \)
 - or find \(f_{\text{actual}} = P/A \)
Procedure for Design (cont’d)

5. is \(P \leq P_{\text{allowable}} \) (or is \(f_{\text{actual}} \leq F_a \)?)
 - yes: ok
 - no: pick a bigger section and go back to step 2.

6. check design efficiency
 - percentage of stress = \(\frac{P_{\text{actual}}}{P_{\text{allowable}}} \cdot 100\% \)
 - if between 90-100%: good
 - if < 90%: pick a smaller section and go back to step 2.

Wood Columns

- slenderness ratio = \(\frac{L}{d_{\text{min}}} = \frac{L}{d_1} \)
 - \(d_1 \) = smaller dimension
 - \(L/d_{\text{min}} \leq 50 \) (max)

\[f_c = \frac{P}{A} \leq F'_c \]

- where \(F'_c \) is the allowable compressive strength parallel to the grain
Allowable Wood Stress

\[F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_t \right) \left(C_F \right) \left(C_p \right) \]

- where:
 - \(F_c \) = compressive strength parallel to grain
 - \(C_D \) = load duration factor
 - \(C_M \) = wet service factor (1.0 dry)
 - \(C_t \) = temperature factor
 - \(C_F \) = size factor
 - \(C_p \) = column stability factor

Strength Factors

- wood properties and load duration, \(C_D \)
 - short duration
 - higher loads
 - normal duration
 - > 10 years
 - stability, \(C_p \)
 - combination curve - tables

\[F'_c = F_c^* C_p = \left(F_c^* C_D \right) C_p \]

Procedure for Analysis

1. calculate \(L_e / d_{\text{min}} \)
2. obtain \(F'_c \)
 - compute \(F_c^E = \frac{K_{ce} E}{\left(\frac{L_e}{d} \right)^2} \)
 - \(K_{ce} \) = 0.3 sawn
 - \(K_{ce} \) = 0.418 glu-lam
3. compute \(F_c^* \approx F_c C_D \)
4. calculate \(F_{cE} / F_c^* \) and get \(C_p \) (table 14)
5. calculate \(F'_c = F_c^* C_p \)
Procedure for Analysis (cont’d)

6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_c$?)
 - yes: OK
 - no: overstressed & no good

Procedure for Design

1. guess a size (pick a section)
2. calculate L_e/d_{min}
3. obtain F'_c
 - compute
 - $K_{cE} = 0.3$ sawn
 - $K_{cE} = 0.418$ glu-lam
4. compute $F'_c \approx F_{cD}$
5. calculate F_{CE}/F'_c and get C_p (table 14)
6. calculate $F'_c = F'_c \cdot C_p$

LRFD design

- limit states for failure
 - yielding
 \[P_u \leq \phi_c P_n \]
 \[\phi_c = 0.85 \]
 \[P_n = F_{cr} A_g \]
 - buckling
 \[\lambda_c \leq 1.5 \]
 \[\lambda_c = \frac{Kl}{r \pi \sqrt{\frac{F_y}{E}}} \]
 \[L_e/r \]

λ_c – column slenderness parameter
A_g - gross area

Procedure for Design (cont’d)

6. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
7. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_c$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.
Compact Sections

- flanges continuously connected to the web or webs and width-thickness rations < limiting values
 - no local buckling of flange or web

 - for $\lambda_c \leq 1.5$
 \[F_{cr} \left(0.658\lambda_c^2\right)F_y \]

 - for $\lambda_c > 1.5$
 \[F_{cr} \left[\frac{0.877}{\lambda_c^2}\right]F_y \]

Column Charts