Design for Strength +...

- strength design
 - forces & material
- serviceability
 - limit deflection and cracking
 - control noise & vibration
 - no excessive settlement of foundations
 - durability
 - appearance
 - component damage
 - ponding

Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

\[\frac{1}{R} = \frac{M}{EI} \]

\[\text{curvature} = \frac{M(x)}{EI} \]

\[\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx \]

\[\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx \]
Boundary Conditions

- at pins, rollers, fixed supports: \(y = 0 \)
- at fixed supports: \(\theta = 0 \)
- at inflection points from symmetry: \(\theta = 0 \)
- \(y_{\text{max}} \) at \(\frac{dy}{dx} = 0 \)

Superpositioning

- if \(w \) can be superpositioned
 - \(\theta \) & \(y \) can
 - elastic range only!

Deflection Limits

- based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/160</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>

Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger \(I_y \)
Local Buckling

- steel I beams
- flange
 - buckle in direction of smaller radius of gyration
- web
 - force
 - “crippling”

Shear in Web

- panels in plate girders or webs with large shear
- buckling in compression direction
- add stiffeners

Local Buckling

- flange
- web

Shear in Web

- plate girders and stiffeners
Beam Design

1. Know F_{ull} for the material or F_U for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{req'd}$ \((f_b \leq F_b) \)

4. Determine section size \(S = \frac{bh^2}{6} \)

Beam Design

4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

 Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.
 Photo: Ken Carper

Beam Design

6. Evaluate shear stresses - horizontal \((f_v \leq F_v) \)
 - W and rectangles \(f_{v-\text{max}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}} \)
 - thin walled sections \(f_{v-\text{max}} = \frac{VQ}{Ib} \)

Beam Design

7. Provide adequate bearing area at supports \(f_p = \frac{P}{A} \leq F_p \)
Beam Design
8. Evaluate torsion
\[(f_v \leq F_v) \]
- circular cross section
\[f_v = \frac{T\rho}{J} \]
- rectangular
\[f_v = \frac{T}{c_1 ab^2} \]

9. Evaluate deflections
\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]

Beam Design
9. – how to read charts