Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

Bolts
- bolted steel connections

Welds
- welded steel connections
Fasteners

- wood connections

Bolted Connection Design

- ASD steel
 - shear:
 \[f_v \leq F_v \]
 - bolt strengths
 - single & double
 - bolt types
 - A325-SC, A490-SC
 - A325-N, A490-N
 - A325-X, A490-X

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

Bolted Connection Design

- ASD steel
 - bearing:
 - bolts rarely fail by bearing
 - other part fails first
Tension Members

- steel members can have holes
- reduced area
- increased stress

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too

ASD – Tension Members

- non-pin connected members:
 - $F_t = 0.60F_y$ on gross area
 - $F_t = 0.50F_u$ on net area
- pin connected members:
 - $F_t = 0.45F_y$ on net area
- threaded rods of approved steel:
 - $F_t = 0.33F_u$ on major diameter
 - (for static loading only)

LRFD - Tension Members

- limit states for failure $P_u \leq \phi_t P_n$

1. yielding $\phi_t = 0.9$ $P_n = F_y A_g$

2. rupture* $\phi_t = 0.75$ $P_n = F_u A_e$

\[A_g \text{ - gross area} \]
\[A_e \text{ - effective net area} \]
\[F_u \text{ - tensile strength of the steel (ultimate)} \]
Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat

- weld materials
 - E60XX
 - E70XX
 - $F_{EXX} = 70$ ksi

Framed Beam Connections

- angles
 - bolted
 - welded

Welded Connection Design

- ASD
 - shear $f_v \leq F_v$
 - $F_v = 0.30F_{weld}$
 - throat
 - $T = 0.707 \times$ weld size
 - area
 - $A = T \times$ length of weld
 - weld metal generally stronger than base metal (ex. $F_y = 50$ ksi)

Welded Connection Design

- shears $f_y \leq F_y$
- lengths $L = T \times$ length of weld
- areas $A = T \times$ length of weld
- moment connection
 - $M = 1.25 \times$ weld size
- shear connection
 - $V = 1.25 \times$ weld size

Connections 16
Lecture 26
Architectural Structures / ENOS 231
S2004abn

Connections 17
Lecture 26
Architectural Structures / ENOS 231
S2004abn

Connections 18
Lecture 26
Architectural Structures / ENOS 231
S2004abn

Connections 19
Lecture 26
Architectural Structures / ENOS 231
S2004abn

Connections 19
Lecture 26
Architectural Structures / ENOS 231
S2004abn
Framed Beam Connections

- **terms**
 - coping

Beam Connections

- **LRFD provisions**
 - shear yielding
 - shear rupture
 - block shear rupture
 - tension yielding
 - tension rupture
 - local web buckling
 - lateral torsional buckling

Framed Beam Connections

- **tables for standard bolt holes & spacings**
 - $n = \# \text{ bolts}$
 - angle leg thickness
 - length needed

Beam Connections

- **block shear rupture**
- **tension rupture**