Moment of Inertia 1
Lecture 11
ENDS 231
Su2006abn

ARCHITECTURAL STRUCTURES I:
STATICS AND STRENGTH OF MATERIALS
ENDS 231
DR. ANNE NICHOLS
SUMMER 2006

moment of inertia
of an area
Moments of Inertia

- 2nd moment area
 - math concept
 - area x (distance)^2
- need for behavior of
 - beams
 - columns
Moment of Inertia

- about any reference axis
- can be negative

\[I_y = \int x^2 \, dA \]
\[I_x = \int y^2 \, dA \]

- resistance to bending and buckling
Moment of Inertia

- larger area away for same distance
 - larger I
Polar Moment of Inertia

- for round-ish shapes
- uses polar coordinates \((r \text{ and } \theta)\)
- resistance to twisting

\[
J_o = \int r^2 \, dA
\]
Radius of Gyration

- measure of inertia with respect to area

\[r_x = \sqrt{\frac{I_x}{A}} \]
Parallel Axis Theorem

- can find composite I once composite centroid is known (basic shapes)

\[I_x = I_{cx} + A d_y^2 \]
\[= \bar{I}_x + A d_y^2 \]

\[I = \sum \bar{I} + \sum A d^2 \]

\[\bar{I} = I - A d^2 \]
Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with A, \bar{x}, $\bar{x}A$, \bar{y}, $\bar{y}A$, I’s, d’s, and Ad^2’s
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum I’s and Ad^2’s

$\left(\begin{array}{c} d_x = \hat{x} - \bar{x} \\ d_y = \hat{y} - \bar{y} \end{array} \right)$
Area Moments of Inertia

- **Table 7.2 – pg. 252:** (bars refer to centroid)
 - x, y
 - x', y'
 - C

<table>
<thead>
<tr>
<th>Shape</th>
<th>Area Moment of Inertia</th>
</tr>
</thead>
</table>
| Rectangle | $I_x = \frac{1}{12}bh^3$
 | $I_y = \frac{1}{12}b'h^3$ |
| | $I_c = \frac{1}{12}bh(b^2 + h^2)$ |
| Triangle | $I_x = \frac{1}{3}bh^3$
 | $I_y = \frac{1}{3}b'h^3$ |
| Circle | $I_x = I_y = \frac{1}{4}\pi r^4$ |
| | $J_o = \frac{1}{2}\pi r^4$ |