Moments of Inertia

- 2nd moment area
 - math concept
 - area \times (distance)^2
- need for behavior of
 - beams
 - columns

Moment of Inertia

- about any reference axis
- can be negative

\[
I_y = \int x^2 \, dA
\]
\[
I_x = \int y^2 \, dA
\]

- resistance to bending and buckling
Polar Moment of Inertia

- for round-ish shapes
- uses polar coordinates (r and θ)
- resistance to twisting

\[J_o = \int r^2 dA \]

Radius of Gyration

- measure of inertia with respect to area

\[r_x = \sqrt{\frac{I_x}{A}} \]

Parallel Axis Theorem

- can find composite I once composite centroid is known (basic shapes)

\[I_x = I_{cx} + Ad_y^2 = \bar{I}_x + Ad_y^2 \]

Basic Procedure

1. Draw reference origin (if not given)
2. Divide into basic shapes (+/-)
3. Label shapes
4. Draw table with A, \bar{x}, \bar{xA}, \bar{y}, \bar{yA}, \bar{I}'s, d's, and Ad^2's
5. Fill in table and get \hat{x} and \hat{y} for composite
6. Sum necessary columns
7. Sum \bar{I}'s and Ad^2's

\((d_x = \hat{x} - \bar{x}) \)
\((d_y = \hat{y} - \bar{y}) \)
Area Moments of Inertia

- Table 7.2 – pg. 252 (bars refer to centroid)
 - x, y
 - x’, y’
 - C