Rigid Frames

- **rigid frames have no pins**
- **frame is all one body**
- **joints transfer moments and shear**
- **typically statically indeterminate**
- **types**
 - portal
 - gable
Rigid Frames

- behavior

(a) P#F rigid frame

(b) support here
legs spread, bending stress in beam only; none in legs

(c) force legs inward; legs now in bending; beam sags less

(d) fixed joint at bottom of legs; beam sags even less
Rigid Frames

- moments get redistributed
- deflections are smaller
- effective column lengths are shorter
- very sensitive to settling
Moment Redistribution

- **continuous slabs & beams with uniform loading**
 - joints similar to fixed ends, but can rotate
- **change in moment to center** $= \frac{wL^2}{8}$
 - M_{max} for simply supported beam
Rigid Frames

- resists lateral loadings
- shape depends on stiffness of beams and columns
- 90° maintained
Rigid Frames

- staggered truss
 - rigidity
 - clear stories
Rigid Frames

- connections
 - steel
 - concrete

http://nisee.berkeley.edu/godden
Braced Frames

- *pin connections*
- *bracing to prevent lateral movements*
Braced Frames

- types of bracing
 - knee-bracing
 - diagonal
 - X
 - K or chevron
 - shear walls
Shear Walls

• resist lateral load in plane with wall
Compression Members

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations
Column Buckling

- axially loaded columns
- long & slender
 - unstable equilibrium = buckling
 - sudden and not good
Modeling

- can be modeled with a spring at mid-height
- when moment from deflection exceeds the spring capacity ... “boing”
- critical load P
Effect of Length

- long & slender
- short & stubby
Buckling Load

- related to deflected shape \((P\Delta)\)
- shape of sine wave
- Euler’s Formula
- smallest \(I\) governs

\[P_{\text{critical}} = \frac{\pi^2 EI}{(L)^2} \]
Critical Stress

- short columns

\[f_{\text{critical}} = \frac{P_{\text{actual}}}{A} < F_a \]

- slenderness ratio = \(\frac{L_e}{r} \) (L/d)

- radius of gyration = \(r = \sqrt{\frac{I}{A}} \)

\[
 f_{\text{critical}} = \frac{P_{\text{critical}}}{A} = \frac{\pi^2 EA r^2}{A (L_e)^2} = \frac{\pi^2 E}{\left(\frac{L_e}{r}\right)^2} \]

\[
 P_{\text{critical}} = \frac{\pi^2 EA}{\left(\frac{L_e}{r}\right)^2}
\]
Critical Stresses

- When a column gets stubby, F_y will limit the load.
- Real world has loads with eccentricity.
- C_c for steel and allowable stress.

\[
\frac{L_e}{r} > C_c = \sqrt{\frac{2\pi^2 E}{F_y}}
\]
Effective Length

- end conditions affect shape
- effective length factor, K \[L_e = K \cdot L \]
Bracing

- **bracing affects shape of buckle in one direction**
- **both should be checked!**
Centric & Eccentric Loading

• centric
 – allowable stress from strength or buckling

• eccentric
 – combined stresses
Combined Stresses

- axial + bending

\[f_{\text{max}} = \frac{P}{A} + \frac{Mc}{I} \]

\[M = P \cdot e \]

- design

\[f_{\text{max}} \leq F_{cr} = \frac{f_{cr}}{F.S.} \]
Stress Limit Conditions

– ASD interaction formula

\[\frac{f_a}{F_a} + \frac{f_b}{F_b} \leq 1.0 \]

– with biaxial bending

\[\frac{f_a}{F_a} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} \leq 1.0 \]

interaction diagram
Stress Limit Conditions

- in reality, as the column flexes, the moment increases

- $P-\Delta$ effect

$$\frac{f_a}{F_a} + \frac{f_b \times (Magnification \ factor)}{F_{bx}} \leq 1.0$$
Rigid Frame Analysis

- **members see**
 - shear
 - axial force
 - bending

- **V & M diagrams**
 - plot on “outside”
Rigid Frame Analysis

- need support reactions
- free body diagram each member
- end reactions are equal and opposite on next member
- “turn” member like beam
- draw V & M
Rigid Frame Analysis

– FBD & M

• opposite end reactions at joints

\[M_{BA} = \frac{P h}{2} \]
\[M_{BC} = \frac{P h}{2} \]
\[M_{CB} = \frac{P h}{2} \]
\[M_{CD} = \frac{P h}{2} \]
Rigid Frame Design

- loads and combinations
 - usually uniformly distributed gravity loads
 - worst case for largest moments...
 - wind direction can increase moments
Rigid Frame Design

- frames & floors
 - rigid frame can have slab floors or slab with connecting beams
- other
 - slabs or plates on columns
Rigid Frame Design

- **floors – plates & slabs**
 - one-way behavior
 - side ratio > 1.5
 - “strip” beam
 - two-way behavior
 - more complex
Rigid Frame Design

- **columns in frames**
 - ends can be “flexible”
 - stiffness affected by beams and column = EI/L

\[
G = \Psi = \frac{\sum EI}{\sum EI} \frac{l_c}{l_b}
\]

- for the joint
 - l_c is the column length of each column
 - l_b is the beam length of each beam
 - measured center to center
Rigid Frame Design

- column effective length, \(k \)
Tools – Multiframe

• *in computer lab*
Tools – Multiframe

- **frame window**
 - define frame members
 - or pre-defined frame
 - select points, assign supports
 - select members, assign section
 - load window
 - select point or member, add point or distributed loads
Tools – Multiframe

- **to run analysis choose**
 - Analyze menu
 - Linear
- **plot**
 - choose options
- **results**
 - choose options