wood construction: materials & beams
Wood Beam Design

- **National Design Specification**
 - National Forest Products Association
 - ASD & LRFD (combined in 2005)
 - Adjustment factors \times tabulated stress = allowable stress
 - Adjustment factors terms, C with subscript
 - I.e., bending:

\[
 f_b \leq F'_b = F_b \times (\text{product of adjustment factors})
\]
Timber

- lightweight: strength ~ like steel
- strengths vary
 - by wood type
 - by direction
 - by “flaws”
- size varies by tree growth
- renewable resource
- manufactured wood
 - assembles pieces
 - adhesives
Wood Properties

- *cell structure and density*

[Image: Comparison of softwood and hardwood textures.]

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• moisture
 – exchanges with air easily
 – excessive drying causes warping and shrinkage
 – strength varies some

• temperature
 – steam
 – volatile products
 – combustion

http://www.swst.org/teach/set2/struct1.html
Wood Properties

• load duration
 – short duration
 • higher loads
 – normal duration
 • > 10 years

• creep
 – additional deformation with no additional load
Structural Lumber

- **dimension** – 2 x’s (nominal)
- **beams, posts, timber, planks**
- **grading**
 - select structural
 - no. 1, 2, & 3
- **tabular values**
 - by species
- **glu-lam**
- **plywood**
Adjustment Factors

- **terms**
 - C_D = load duration factor
 - C_M = wet service factor
 - 1.0 dry \leq 16% MC
 - C_F = size factor
 - visually graded sawn lumber and round timber > 12" depth

\[
C_F = \left(\frac{12}{d} \right)^{\frac{1}{9}} \leq 1.0
\]

Table 10.3 (pg 376)
Adjustment Factors

• terms
 – \(C_{fu} = \text{flat use factor} \)
 • not decking
 – \(C_i = \text{incising factor} \)
 • increase depth for pressure treatment
 – \(C_t = \text{temperature factor} \)
 • lose strength at high temperatures
Adjustment Factors

• terms
 – $C_r = \text{repetitive member factor}$
 – $C_H = \text{shear stress factor}$
 • splitting
 – $C_V = \text{volume factor}$
 • same as C_F for glue laminated timber
 – $C_L = \text{beam stability factor}$
 • beams without full lateral support
 – $C_C = \text{curvature factor for laminated arches}$
Allowable Stresses

- Design values
 - F_b: bending stress
 - F_t: tensile stress
 - F_v: horizontal shear stress
 - $F_{c\perp}$: compression stress (perpendicular to grain)
 - F_c: compression stress (parallel to grain)
 - E: modulus of elasticity
 - F_p: bearing stress (parallel to grain)
Load Combinations

• **design loads, take the bigger of**
 – (dead loads)/0.9
 – (dead loads + any possible combination of live loads)/C_D

• **deflection limits**
 – **no load factors**
 – **for stiffer members:**
 • $\Delta_T \text{ max from } LL + 0.5(DL)$
Beam Design Criteria

• strength design
 – bending stresses predominate
 – shear stresses occur

• serviceability
 – limit deflection and cracking
 – control noise & vibration
 – no excessive settlement of foundations
 – durability
 – appearance
 – component damage
 – ponding
Beam Design Criteria

- superpositioning
 - use of beam charts
 - elastic range only!
 - “add” moment diagrams
 - “add” deflection CURVES (not maximums)
Beam Deformations

- curvature relates to
 - bending moment
 - modulus of elasticity
 - moment of inertia

\[
\frac{1}{R} = \frac{M}{EI}
\]

\[
\text{curvature} = \frac{M(x)}{EI}
\]

\[
\theta = \text{slope} = \int \frac{M(x)}{EI} \, dx
\]

\[
\Delta = \text{deflection} = \int \int \frac{M(x)}{EI} \, dx
\]
Deflection Limits

- **based on service condition, severity**

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td>L/480</td>
<td></td>
</tr>
</tbody>
</table>
Lateral Buckling

- lateral buckling caused by compressive forces at top coupled with insufficient rigidity
- can occur at low stress levels
- stiffen, brace or bigger I_y
Timber Beam Bracing

Table 9.3 Lateral bracing requirements for timber beams.

<table>
<thead>
<tr>
<th>Beam Depth/Width Ratio</th>
<th>Type of Lateral Bracing Required</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to 1</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>3 to 1</td>
<td>The ends of the beam should be held in position</td>
<td></td>
</tr>
<tr>
<td>5 to 1</td>
<td>Hold the compression edge in line (continuously)</td>
<td></td>
</tr>
<tr>
<td>6 to 1</td>
<td>Diagonal bracing should be used</td>
<td></td>
</tr>
<tr>
<td>7 to 1</td>
<td>Both edges of the beam should be held in line</td>
<td></td>
</tr>
</tbody>
</table>
Design Procedure

1. Know F_{all} for the material or F_{U} for LRFD

2. Draw V & M, finding M_{max}

3. Calculate $S_{\text{req'd}}$ \((f_b \leq F_b) \)

4. Determine section size

\[S = \frac{bh^2}{6} \]
Beam Design

4*. Include self weight for M_{max}
 - and repeat 3 & 4 if necessary

5. Consider lateral stability

Unbraced roof trusses were blown down in 1999 at this project in Moscow, Idaho.

Photo: Ken Carper
Beam Design

6. Evaluate shear stresses - horizontal

- \((f_v \leq F_v)\)

- rectangles and W’s

\[
f_{v_{-\text{max}}} = \frac{3V}{2A} \approx \frac{V}{A_{\text{web}}}
\]

- general

\[
f_{v_{-\text{max}}} = \frac{VQ}{Ib}
\]
Beam Design

7. Provide adequate bearing area at supports

\[f_p = \frac{P}{A} \leq F_p \]
Beam Design

8. Evaluate torsion

\(f_v \leq F_v \)

- circular cross section
 \[f_v = \frac{T \rho}{J} \]
- rectangular
 \[f_v = \frac{T}{c_1 ab^2} \]

<table>
<thead>
<tr>
<th>a/b</th>
<th>c_1</th>
<th>c_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.208</td>
<td>0.1406</td>
</tr>
<tr>
<td>1.2</td>
<td>0.219</td>
<td>0.1661</td>
</tr>
<tr>
<td>1.5</td>
<td>0.231</td>
<td>0.1958</td>
</tr>
<tr>
<td>2.0</td>
<td>0.246</td>
<td>0.229</td>
</tr>
<tr>
<td>2.5</td>
<td>0.258</td>
<td>0.249</td>
</tr>
<tr>
<td>3.0</td>
<td>0.267</td>
<td>0.263</td>
</tr>
<tr>
<td>4.0</td>
<td>0.282</td>
<td>0.281</td>
</tr>
<tr>
<td>5.0</td>
<td>0.291</td>
<td>0.291</td>
</tr>
<tr>
<td>10.0</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.333</td>
<td>0.333</td>
</tr>
</tbody>
</table>
Beam Design

9. Evaluate deflections

\[y_{\text{max}}(x) = \Delta_{\text{actual}} \leq \Delta_{\text{allowable}} \]
Decking

- across beams or joists
- floors: 16 in. span common
 - ¾ in. tongue-in-groove plywood
 - 5/8 in. particle board over ½ in. plywood
 - hardwood surfacing
- roofs: 24 in. span common
 - ½ in. plywood
Joists & Rafters

- allowable load tables \((w)\)
- allowable length tables for common live & dead loads
- lateral bracing needed
- common spacings
Engineered Wood

- plywood
 - veneers at different orientations
 - glued together
 - split resistant
 - higher and uniform strength
 - limited shrinkage and swelling
 - used for sheathing, decking, shear walls, diaphragms
Engineered Wood

• glued-laminated timber
 – glulam
 – short pieces glued together
 – straight or curved
 – grain direction parallel
 – higher strength
 – more expensive than sawn timber
 – large members (up to 100 feet!)
 – flexible forms
Engineered Wood

- **I sections**
 - beams

- **other products**
 - pressed veneer strip panels (Parallam)
 - laminated veneer lumber (LVL)

- **wood fibers**
 - Hardieboard: cement & wood
Timber Elements

- **stressed-skin elements**
 - modular built-up “plates”
 - typically used for floors or roofs

Figure 1. Typical Two-Sided Stressed-Skin Panel
Timber Elements

- **built-up box sections**
 - built-up beams
 - usually site-fabricated
 - bigger spans
Timber Elements

- trusses
 - long spans
 - versatile
 - common in roofs
Timber Elements

- folded plates and arch panels
 - usually of plywood
Timber Elements

- arches and lamellas
 - arches commonly laminated timber
 - long spans
 - usually only for roofs
Approximate Depths

![Approximate Depths Diagram](image)

FIGURE 15-3 Approximate span ranges for timber systems.