Steel construction: trusses, decks & plate girders
Iron & Steel Trusses

- cast iron
 - 18th century
 - chain links
- wrought-iron
- rivets

http://nisee.berkeley.edu/godden
Truss Connections

- gusset plates
- bolts
- welds
Trusses

- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - diagonal tension counters
 - solvable with statics
 - cables can’t hold compression
 - displacement methods
 - elastic elongation
 - too few members, unstable
Manufactured Trusses

- open web joists
- parallel chord
Open Web Joists

- **SJL:** www.steeljoist.com
- **Vulcraft:** www.vulcraft.com
 - **K Series (Standard)**
 - 8-30” deep, spans 8-50 ft
 - **LH Series (Long span)**
 - 18-48” deep, spans 25-96 ft
 - **DLH (Deep Long Spans)**
 - 52-72” deep, spans 89-144 ft
 - **SLH (Long spans with high strength steel)**
 - pitched top chord
 - 80-120” deep, spans 111-240 ft
Load Tables - w

Standard Load Table for Open Web Steel Joists, K-Series

Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds Per Linear Foot (plf)

<table>
<thead>
<tr>
<th>Joist Designation</th>
<th>10K1</th>
<th>12K1</th>
<th>12K3</th>
<th>12K5</th>
<th>14K1</th>
<th>14K3</th>
<th>14K4</th>
<th>14K6</th>
<th>16K2</th>
<th>16K3</th>
<th>16K4</th>
<th>16K5</th>
<th>16K6</th>
<th>16K7</th>
<th>16K9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (in.)</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Approx. Wt. (lbs./ft.)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.7</td>
<td>7.1</td>
<td>5.2</td>
<td>6.0</td>
<td>6.7</td>
<td>7.7</td>
<td>5.5</td>
<td>6.3</td>
<td>7.0</td>
<td>7.5</td>
<td>8.1</td>
<td>8.6</td>
<td>10.0</td>
</tr>
<tr>
<td>Span (ft.) +</td>
<td>10</td>
<td>825</td>
<td>550</td>
<td>11</td>
<td>825</td>
<td>542</td>
<td>12</td>
<td>825</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>550</td>
<td>13</td>
<td>718</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>618</td>
<td>750</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>537</td>
<td>651</td>
<td>814</td>
<td>825</td>
<td>766</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>469</td>
<td>570</td>
<td>714</td>
<td>825</td>
<td>672</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>415</td>
<td>504</td>
<td>630</td>
<td>825</td>
<td>592</td>
<td>742</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>369</td>
<td>448</td>
<td>561</td>
<td>760</td>
<td>528</td>
<td>661</td>
<td>795</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>331</td>
<td>402</td>
<td>502</td>
<td>681</td>
<td>472</td>
<td>592</td>
<td>712</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>298</td>
<td>361</td>
<td>451</td>
<td>613</td>
<td>426</td>
<td>534</td>
<td>642</td>
<td>787</td>
<td>552</td>
<td>615</td>
<td>739</td>
<td>825</td>
<td>825</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>258</td>
<td>327</td>
<td>409</td>
<td>555</td>
<td>385</td>
<td>483</td>
<td>582</td>
<td>712</td>
<td>499</td>
<td>556</td>
<td>670</td>
<td>754</td>
<td>822</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>228</td>
<td>298</td>
<td>373</td>
<td>505</td>
<td>351</td>
<td>439</td>
<td>529</td>
<td>648</td>
<td>454</td>
<td>505</td>
<td>609</td>
<td>687</td>
<td>747</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>202</td>
<td>271</td>
<td>340</td>
<td>462</td>
<td>321</td>
<td>402</td>
<td>483</td>
<td>592</td>
<td>415</td>
<td>462</td>
<td>556</td>
<td>627</td>
<td>682</td>
<td>760</td>
</tr>
</tbody>
</table>

load for live load deflection limit (L/360) in **RED total in **BLACK**
Decks

- **sheet steel**
- **composite**
Light-gage Steel

- **sheet metal**
 - shaped
 - studs, panels, window frames
- **gage**
 - based on weight of 41.82 lb/ft² / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in
 - 0.6, 0.85, 1.0, 1.3, 1.6 mm

http://nisee.berkeley.edu/godden
Steel Decks

- “Texas” style
 - corrugated
- common
 - 1 – 3 spans
 - can be insulated
 - composite
 - with concrete
Steel Decks

• common fire proofing
 – cementitious spray
 – composite concrete

• non-composite
 – concrete is fill

• lateral bracing

• diaphragm action
Load Tables - w

- **live load deflection limit**
 \(L/240 \)

VERTICAL LOADS FOR TYPE 1.5B

<table>
<thead>
<tr>
<th>No. of Spans</th>
<th>Deck Type</th>
<th>Max. SDI Const. Span</th>
<th>5'-0</th>
<th>5'-6</th>
<th>6'-0</th>
<th>6'-6</th>
<th>7'-0</th>
<th>7'-6</th>
<th>8'-0</th>
<th>8'-6</th>
<th>9'-0</th>
<th>9'-6</th>
<th>10'-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B 24</td>
<td>4'-8</td>
<td>66</td>
<td>52</td>
<td>42</td>
<td>36</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>20</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>B 22</td>
<td>5'-7</td>
<td>91</td>
<td>71</td>
<td>57</td>
<td>47</td>
<td>40</td>
<td>34</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>B 21</td>
<td>6'-0</td>
<td>104</td>
<td>81</td>
<td>64</td>
<td>53</td>
<td>44</td>
<td>38</td>
<td>33</td>
<td>29</td>
<td>26</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>B 20</td>
<td>6'-5</td>
<td>115</td>
<td>89</td>
<td>71</td>
<td>58</td>
<td>48</td>
<td>41</td>
<td>36</td>
<td>31</td>
<td>28</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>B 19</td>
<td>7'-1</td>
<td>139</td>
<td>107</td>
<td>85</td>
<td>69</td>
<td>57</td>
<td>48</td>
<td>41</td>
<td>36</td>
<td>32</td>
<td>29</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>B 18</td>
<td>7'-8</td>
<td>162</td>
<td>124</td>
<td>99</td>
<td>79</td>
<td>65</td>
<td>55</td>
<td>47</td>
<td>41</td>
<td>36</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>B 16</td>
<td>8'-8</td>
<td>206</td>
<td>157</td>
<td>123</td>
<td>99</td>
<td>81</td>
<td>68</td>
<td>58</td>
<td>50</td>
<td>44</td>
<td>39</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>B 24</td>
<td>5'-10</td>
<td>126</td>
<td>104</td>
<td>87</td>
<td>74</td>
<td>64</td>
<td>55</td>
<td>47</td>
<td>41</td>
<td>36</td>
<td>32</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>B 22</td>
<td>6'-11</td>
<td>102</td>
<td>85</td>
<td>71</td>
<td>61</td>
<td>52</td>
<td>46</td>
<td>40</td>
<td>35</td>
<td>32</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>B 21</td>
<td>7'-4</td>
<td>118</td>
<td>97</td>
<td>82</td>
<td>70</td>
<td>60</td>
<td>52</td>
<td>46</td>
<td>41</td>
<td>36</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>B 20</td>
<td>7'-9</td>
<td>132</td>
<td>109</td>
<td>91</td>
<td>78</td>
<td>67</td>
<td>59</td>
<td>51</td>
<td>46</td>
<td>41</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>B 19</td>
<td>8'-5</td>
<td>154</td>
<td>127</td>
<td>107</td>
<td>91</td>
<td>79</td>
<td>69</td>
<td>60</td>
<td>53</td>
<td>48</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>B 18</td>
<td>9'-1</td>
<td>174</td>
<td>144</td>
<td>121</td>
<td>103</td>
<td>89</td>
<td>78</td>
<td>68</td>
<td>60</td>
<td>54</td>
<td>48</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>B 16</td>
<td>10'-3</td>
<td>219</td>
<td>181</td>
<td>152</td>
<td>130</td>
<td>112</td>
<td>97</td>
<td>86</td>
<td>76</td>
<td>68</td>
<td>61</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>B 24</td>
<td>5'-10</td>
<td>130</td>
<td>100</td>
<td>79</td>
<td>65</td>
<td>54</td>
<td>45</td>
<td>39</td>
<td>34</td>
<td>31</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>B 22</td>
<td>6'-11</td>
<td>128</td>
<td>106</td>
<td>89</td>
<td>76</td>
<td>65</td>
<td>57</td>
<td>50</td>
<td>44</td>
<td>39</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>B 21</td>
<td>7'-4</td>
<td>147</td>
<td>122</td>
<td>102</td>
<td>87</td>
<td>75</td>
<td>65</td>
<td>56</td>
<td>49</td>
<td>42</td>
<td>38</td>
<td>34</td>
</tr>
</tbody>
</table>
Plate Girders

- welds
- web stiffeners

[Diagram showing plate girders, angle stiffeners, and web stiffeners]

http://nisee.berkeley.edu/godden

stiffeners at end where shear is greatest and at support

thicker flange in center where moment is greatest

PLATE GIRDER BOX GIRDER

stiffeners to prevent lateral buckling
Web Bearing

- max loads

\[P_{n(max-end)} = (N + 2.5k)F_y t_w \]

\[P_{n(max-interior)} = (N + 5k)F_{yw} t_w \]
Space Trusses

• 3D with 2 force bodies and pins
 – pyramid
 – tetrahedron

• “frames” have fixed joints

• layers

• 40’s
Space Trusses

- connections

- supports

(a) UNISTRUT (system 1) (b) TRIODETIC (c) MERO (KK-ball)

(a) CORNER SUPPORTS (b) PERIMETER SUPPORTS (c) CROSSHEAD BEAMS

(a) COLUMN (POINT) SUPPORT (b) INVERTED PYRAMID

PLAN (crosshead beam support)
Space Trusses

http://nisee.berkeley.edu/godden

www.archdaily.com

Lecture 19

ARCH 331

F2014abn
Space Trusses
Tensegrities

- 3D frame
- discontinuous struts
- continuous cables

Free Ride Home – Kenneth Snelson
Method of Sections

• relies on internal forces being in equilibrium on a section
• cut to expose 3 or less members
• coplanar forces \(\rightarrow \sum M = 0 \) too
Method of Sections

- joints on or off the section are good to sum moments
- quick for few members
- not always obvious where to cut or sum