lecture nineteen

steel construction: trusses, decks & plate girders
Iron & Steel Trusses

- **cast iron**
 - 18th century
 - chain links
- **wrought-iron**
- **rivets**
Truss Connections

- gusset plates
- bolts
- welds

(AISC - Steel Structures of the Everyday)

http://courses.civil.ualberta.ca
Trusses

- require lateral bracing
- consider buckling
- indeterminate trusses
 - extra members
 - diagonal tension counters
 - solvable with statics
 - cables can’t hold compression
 - displacement methods
 - elastic elongation
 - too few members, unstable

http://nisee.berkeley.edu/godden
Manufactured Trusses

- open web joists
- parallel chord
Open Web Joists

- **SJI**: www.steeljoist.com
- **Vulcraft**: www.vulcraft.com
 - **K Series (Standard)**
 - 8-30” deep, spans 8-50 ft
 - **LH Series (Long span)**
 - 18-48” deep, spans 25-96 ft
 - **DLH (Deep Long Spans)**
 - 52-72” deep, spans 89-144 ft
 - **SLH (Long spans with high strength steel)**
 - pitched top chord
 - 80-120” deep, spans 111-240 ft
Load Tables - w

LRFD

STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES

Based On A 50 ksi Maximum Yield Strength - Loads Shown In Pounds Per Linear Foot (plf)

<table>
<thead>
<tr>
<th>Joist Designation</th>
<th>10K1</th>
<th>12K1</th>
<th>12K3</th>
<th>12K5</th>
<th>14K1</th>
<th>14K3</th>
<th>14K4</th>
<th>14K6</th>
<th>16K2</th>
<th>16K3</th>
<th>16K4</th>
<th>16K5</th>
<th>16K6</th>
<th>16K7</th>
<th>16K9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (in.)</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Approx. Wt (lbs./ft.)</td>
<td>5.0</td>
<td>5.0</td>
<td>5.7</td>
<td>7.1</td>
<td>5.2</td>
<td>6.0</td>
<td>6.7</td>
<td>7.7</td>
<td>5.5</td>
<td>6.3</td>
<td>7.0</td>
<td>7.5</td>
<td>8.1</td>
<td>8.6</td>
<td>10.0</td>
</tr>
<tr>
<td>Span (ft.) +</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>11</td>
<td>825</td>
<td>542</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>13</td>
<td>718</td>
<td>510</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>14</td>
<td>618</td>
<td>425</td>
<td>636</td>
<td>510</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>15</td>
<td>537</td>
<td>463</td>
<td>670</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>16</td>
<td>469</td>
<td>434</td>
<td>636</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>17</td>
<td>475</td>
<td>504</td>
<td>636</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>18</td>
<td>399</td>
<td>488</td>
<td>561</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>19</td>
<td>331</td>
<td>448</td>
<td>561</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>20</td>
<td>298</td>
<td>395</td>
<td>561</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
<tr>
<td>21</td>
<td>279</td>
<td>317</td>
<td>432</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
<td>550</td>
<td>825</td>
</tr>
</tbody>
</table>

load for live load deflection limit (L/360) in RED total in BLACK
Decks

- sheet steel
- composite
Light-gage Steel

- **sheet metal**
 - shaped
 - studs, panels, window frames
 - gage
 - based on weight of 41.82 lb/ft2 / inch of thickness
 - 24, 22, 18, 16, i.e.
 - 0.0239, 0.0329, 0.0474, 0.0598 in
 - 0.6, 0.85, 1.0, 1.3, 1.6 mm
Steel Decks

- “Texas” style
 - corrugated
- common
 - 1 – 3 spans
 - can be insulated
 - composite
 - with concrete
Steel Decks

- common fire proofing
 - cementitious spray
 - composite concrete
- non-composite
 - concrete is fill
- lateral bracing
- diaphragm action
Load Tables - w

- live load
deflection limit
L/240
Plate Girders

- welds
- web stiffeners

http://nisee.berkeley.edu/godden

Plate Girder

Box Girder

stiffeners at end where shear is greatest and at support

stiffeners to prevent lateral buckling
Web Bearing

- **max loads**

\[
P_{n(max-end)} = (N + 2.5k)F_{yw}t_w
\]

\[
P_{n(max-interior)} = (N + 5k)F_{yw}t_w
\]
Space Trusses

- 3D with 2 force bodies and pins
 - pyramid
 - tetrahedron
- “frames” have fixed joints
- layers
- 40’s
Space Trusses

• connections

(a) UNISTRUT (System U)
(b) TRIODETIC
(c) MERO (KK-CELL)

(a) CORNER SUPPORTS
(b) PERIMETER SUPPORTS

• supports

(a) COLUMN (POINT) SUPPORT
(b) INVERTED PYRAMID
(c) CROSSHEAD BEAMS

PLAN
(crosshead beam support)
Space Trusses

http://nisee.berkeley.edu/godden

www.archdaily.com

Lecture 19

ARCH 331

S2015abn
Space Trusses

http://nisee.berkeley.edu/godden
Tensegrities

- 3D frame
- discontinuous struts
- continuous cables

Free Ride Home – Kenneth Snelson
Method of Sections

- relies on internal forces being in equilibrium on a section
- cut to expose 3 or less members
- coplanar forces \rightarrow $\sum M = 0$ too
Method of Sections

• **joints on or off the section are good to sum moments**
• **quick for few members**
• **not always obvious where to cut or sum**

![Diagram](image)