Concrete construction: columns & frames
Concrete in Compression

- **crushing**
- **vertical cracking**
 - tension
- **diagonal cracking**
 - shear
- f'_c
Columns Reinforcement

- columns require
 - ties or spiral reinforcement to “confine” concrete (#3 bars minimum)
 - minimum amount of longitudinal steel (#5 bars minimum: 4 with ties, 5 with spiral)
Slenderness

- effective length in monolithic with respect to stiffness of joint: \(\Psi \) & \(k \)
- not slender when
 \[
 \frac{kL_u}{r} < 22
 \]
Effective Length (revisited)

- relative rotation

\[\Psi = \frac{\sum EI}{l_c} / \frac{\sum EI}{l_b} \]
Column Behavior

Figure 13.3.2 Spirally reinforced column behavior. (Courtesy of Portland Cement Association.)

Figure 13.3.3 Tied column behavior. (Courtesy of Portland Cement Association.)
Column Design

- $\phi_c = 0.65$ for ties, $\phi_c = 0.75$ for spirals
- P_o – no bending
 \[P_o = 0.85 f'_c (A_g - A_{st}) + f_y A_{st} \]
- $P_u \leq \phi_c P_n$
 - ties: $P_n = 0.8P_o$
 - spiral: $P_n = 0.85P_o$
- nominal axial capacity:
 - presumes steel yields
 - concrete at ultimate stress

$C_1 = 0.85 f'_c (A_g - A_{st})$

$C_2 = f_y A_1$

$C_3 = f_y A_2$

P_0 is located colinearly with the resultant of C_1, C_2, and C_3 at the plastic centroid.
Columns with Bending

- **eccentric loads can cause moments**
- **moments can change shape and induce more deflection** \((P-\Delta)\)

Figure 10.6 Considerations for development of bending in steel columns; (a) bending induced by eccentric load, (b) bending transferred to column in a rigid frame, and (c) combined loading condition, separately producing axial compression and bending.
Columns with Bending

- for ultimate strength behavior, ultimate strains can’t be exceeded
 - concrete 0.003
 - steel \(\frac{f_y}{E_s} \)

- \(P \) reduces with \(M \)
Columns with Bending

- need to consider combined stresses
- linear strain
- steel stress at or below f_y
- plot interaction diagram

Figure 5-3 Transition Stages on Interaction Diagram
Design Methods

- **calculation intensive**
 - handbook charts
 - computer programs
Design Considerations

• bending at both ends
 – $P - \Delta$ maximum

• biaxial bending

• walls
 – unit wide columns
 – “deep” beam shear

• detailing
 – shorter development lengths
 – dowels to footings