concrete construction: foundation design

Bright Football Complex
www.tamu.edu
Foundation

• the engineered interface between the earth and the structure it supports that transmits the loads to the soil or rock
Structural vs. Foundation Design

• structural design
 – choice of materials
 – choice of framing system
 – uniform materials and quality assurance
 – design largely independent of geology, climate, etc.
Structural vs. Foundation Design

- **foundation design**
 - cannot specify site materials
 - site is usually predetermined
 - framing/structure predetermined
 - site geology influences foundation choice
 - no site the same
 - no design the same
Soil Properties & Mechanics

- unit weight of soil
- allowable soil pressure
- factored net soil pressure
- shear resistance
- backfill pressure
- cohesion & friction of soil
- effect of water
- settlement
- rock fracture behavior
Soil Properties & Mechanics

• compressibility
 – settlements

• strength
 – stability
 • shallow foundations
 • deep foundations
 • slopes and walls
 – ultimate bearing capacity, \(q_u \)
 – allowable bearing capacity, \(q_a = \frac{q_u}{S.F.} \)

S.F. = stress factor
Soil Properties & Mechanics

- strength, q_a

Table 1804.3

<table>
<thead>
<tr>
<th>Class of material</th>
<th>Loadbearing pressure (pounds per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crystalline bedrock</td>
<td>12,000</td>
</tr>
<tr>
<td>2. Sedimentary rock</td>
<td>6,000</td>
</tr>
<tr>
<td>3. Sandy Gravel</td>
<td>5,000</td>
</tr>
<tr>
<td>4. Sand, silty sand, clayey sand, silty</td>
<td>3,000</td>
</tr>
<tr>
<td>gravel and clayey gravel</td>
<td></td>
</tr>
<tr>
<td>5. Clay, sandy clay, silty clay & clayey</td>
<td>2,000</td>
</tr>
<tr>
<td>silt</td>
<td></td>
</tr>
</tbody>
</table>

Note a. 1 psf = 47.9 Pa.

Figure 2.5
Presumptive surface bearing values of various soils, as given in the BOCA National Building Code/1996. (Reproduced by permission)
Bearing Failure

- shear

slip zone

punched wedge
Lateral Earth Pressure

• **passive vs. active**

![Diagram showing active and passive lateral earth pressure](image)

- **active**: (trying to move wall)
- **passive**: (resists movement)
Foundation Materials

• concrete, plain or reinforced
 – shear
 – bearing capacity
 – bending
 – embedment length, development length

• other materials (piles)
 – steel
 – wood
 – composite
Basic Foundation Requirements

- **safe against instability or collapse**
- **no excessive/damaging settlements**
- **consider environment**
 - frost action
 - shrinkage/swelling
 - adjacent structure, property lines
 - ground water
 - underground defects
 - earthquake
- **economics**
Generalized Design Steps

- calculate loads
- characterize soil
- determine footing location and depth
- evaluate soil bearing capacity
- determine footing size (unfactored loads)
- calculate contact pressure and check stability
- estimate settlements
- design footing structure* (factored loads)
Types of Foundations

• spread footings
• wall footings
• eccentric footings
• combined footings
• unsymmetrical footings
• strap footings

Figure 5.1 Spread footing shapes and dimensions.
Types of Foundations

- mat foundations
- retaining walls
- basement walls
- pile foundations
- drilled piers
Shallow Footings

• spread footing
 – a square or rectangular footing supporting a single column
 – reduces stress from load to size the ground can withstand
Actual vs. Design Soil Pressure

• *stress distribution is a function of*
 – footing rigidity
 – soil behavior

• *linear stress distribution assumed*
Proportioning Footings

• net allowable soil pressure, q_{net}

 $q_{\text{net}} = q_{\text{allowable}} - h_f (\gamma_c - \gamma_s)$

 – considers all extra weight (overburden) from replacing soil with concrete

 – can be more overburden

• design requirement with total unfactored load:

 $\frac{P}{A} \leq q_{\text{net}}$
Concrete Spread Footings

- plain or reinforced
- ACI specifications
- $P_u =$ combination of factored D, L, W
- ultimate strength
 - $V_u \leq \phi V_c : \phi = 0.75$ for shear
 - plain concrete has shear strength
 - $M_u \leq \phi M_n : \phi = 0.9$ for flexure
Concrete Spread Footings

• failure modes

Figure 9.2 "Shear" failure in a spread footing loaded in a laboratory (Talbot, 1913). Observe how this failure actually is a combination of tension and shear.

shear

Figure 9.3 Flexural failure in a spread footing loaded in a laboratory (Talbot, 1913).

bending
Concrete Spread Footings

- shear failure

one way shear

two way shear
Over and Under-reinforcement

- reinforcement ratio for bending
 \[\rho = \frac{A_s}{bd} \]
- use as a design estimate to find \(A_s, b, d \)
- \(\max \rho \) from \(\varepsilon_{steel} \geq 0.004 \)
- minimum for slabs & footings of uniform thickness

\[\frac{A_s}{bh} = 0.002 \text{ grade 40/50 bars} \]
\[= 0.0018 \text{ grade 60 bars} \]
Reinforcement Length

- **need length, \(\ell_d \)**
 - bond
 - development of yield strength

Figure 6.2.1 Development of reinforcement.

Figure 6.11.2 Development length \(L_{dh} \) for hooked bar.
Column Connection

- bearing of column on footing
 - $P_u \leq \phi P_n = \phi (0.85 f'_c A_1)$
 - $\phi = 0.65$ for bearing
 - confined: increase $x \sqrt{\frac{A_2}{A_1}} \leq 2$

- dowel reinforcement
 - if $P_u > P_b$, need compression reinforcement
 - min of 4 - #5 bars (or 15 metric)
Wall Footings

- continuous strip for load bearing walls
- plain or reinforced
- behavior
 - wide beam shear
 - bending of projection
- dimensions usually dictated by codes for residential walls
- light loads
Eccentrically Loaded Footings

• footings subject to moments

\[M = Pe \]

– soil pressure resultant force may not coincide with the centroid of the footing
Differential Soil Pressure

- to avoid large rotations, limit the differential soil pressure across footing
- for rigid footing, simplification of soil pressure is a linear distribution based on constant ratio of pressure to settlement
Kern Limit

- boundary of e for no tensile stress
- triangular stress block with p_{max}

\[
\text{volume} = \frac{wp_x}{2} = N
\]

\[
P_{\text{max}} = \frac{2N}{wx}
\]
Guidelines

– want resultant of load from pressure inside the middle third of base (kern)
 • ensures stability with respect to overturning

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} = \frac{R \cdot x}{M} \geq 1.5 \]

– pressure under toe (maximum) \(\leq q_a \)
– shortcut using uniform soil pressure for design moments gives similar steel areas
Combined Footings

- supports two columns
- used when space is tight and spread footings would overlap or when at property line

- soil pressure might not be uniform
- proportion so pressure will uniform for sustained loads
- behaves like beam lengthwise
Combined Footing Types

- **rectangular**
- **trapezoid**

- **strap or cantilever**
 - prevents overturning of exterior column

- **raft/mat**
 - more than two columns over an extended area
Proportioning

- uniform settling is desired
- area is proportioned with sustained column loads
- want the resultant to coincide with centroid of footing area for uniformly distributed pressure assuming a rigid footing

\[q_{\text{max}} \leq q_a \]
Retaining Walls

- **purpose**
 - retain soil or other material

- **basic parts**
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key
Retaining Walls

- considerations
 - overturning
 - settlement
 - allowable bearing pressure
 - sliding
 - (adequate drainage)

Figure 2.50
Three failure mechanisms in retaining walls.
Retaining Walls

• procedure
 – proportion and check stability with working loads for bearing, \textit{overturning} and \textit{sliding}
 – design structure with factored loads

\[
SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2
\]

\[
SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2
\]
Retaining Wall Proportioning

- **estimate size**
 - footing size, $B \approx 2/5 - 2/3$ wall height (H)
 - footing thickness $\approx 1/12 - 1/8$ footing size (B)
 - base of stem $\approx 1/10 - 1/12$ wall height ($H+h_f$)
 - top of stem $\geq 12”$
Retaining Walls Forces

- **design like cantilever beam**
 - V_u & M_u for reinforced concrete
 - $V_u \leq \phi V_c : \phi = 0.75$ for shear
 - $M_u \leq \phi M_n : \phi = 0.9$ for flexure

Figure 24.12 Typical loading diagrams for stem design: (a) with no surcharge loads; (b) with uniform surcharge load; (c) with point surcharge load.
Retaining Wall Types

• “gravity” wall
 – usually unreinforced
 – economical & simple

• cantilever retaining wall
 – common
Retaining Wall Types

- **counterfort wall**
- **buttress wall**
- **bridge abutment**
- **basement frame wall** (large basement areas)

very tall walls (> 20 - 25 ft)
Deep Foundations

• usage
 – when spread footings, mats won’t work
 – when they are required to transfer the structural loads to good bearing material
 – to resist uplift or overturning
 – to compact soil
 – to control settlements of spread or mat foundations
Deep Foundation Types

- piles - usually driven, 6”-8” ø, 5’ +
- piers
- caissons
- drilled shafts
- bored piles
- pressure injected piles

- drilled, excavated, concreted (with or without steel)
- 2.5’ - 10’/12’ ø
Deep Foundation Types

- **Grade**
 - 200–900 mm
 - Cross section of plain pipe pile
 - Shell thickness 8–12
 - 300–900 dia.
 - Cross section of pipe pile with steel core
 - End closure may be omitted
 - Socket required for vertical high loads only

- **Typical combinations**
 - Cased or uncased concrete
 - Steel pipe concrete filled
 - Concrete filled steel shell
 - Timber
 - HP section
 - Taper may be omitted

- **300–600 mm**
 - 300–600 diam.
 - Note: reinforcing may be prestressed
 - 300–1400 diam.
 - Typical cross sections
 - Sides straight or tapered

- **200–450 diameter**
 - Cross section
 - Corrugated shell
 - Thickness 10 ga to 24 ga
 - Sides straight or tapered

- **Grade**
 - Butt diameter
 - 300–500 mm
 - Pile may be treated with wood preservative
 - Cross section
 - Tip diameter 150–250
 - Welded Rail
 - Sheet pile
 - Welded Rail

- **300–450 mm diameter**
 - Typical cross section
 - Fluted shell
 - 250–900 dia.
 - Shell thickness 3–8
 - Sides straight or tapered
 - Minimum tip diameter 200

- **350–500 diameter**
 - Typical cross section
 - Pedestal may be omitted

Foundations 41
Lecture 27

Architectural Structures
ARCH 331

S2015abn
Deep Foundations

- classification
 - by material
 - by shape
 - by function (structural, compaction...)

- pile placement methods
 - driving with pile hammer (noise & vibration)
 - driving with vibration (quieter)
 - jacking
 - drilling hole & filling with pile or concrete
Piles Classified By Material

- **timber**
 - use for temporary construction
 - to densify loose sands
 - embankments
 - fenders, dolphins (marine)

- **concrete**
 - precast: ordinary reinforcement or prestressed
 - designed for axial capacity and bending with handling
Piles Classified By Material

- **steel**
 - rolled HP shapes or pipes
 - pipes may be filled with concrete
 - HP displaces little soil and may either break small boulders or displace them to the side
Piles Classified By Function

– end bearing pile (point bearing)

- soft or loose layer
- “socketed”

\[P_a = A_p \cdot f_a \]
for use in soft or loose materials over a dense base

\[R_p \]

– friction piles (floating)

- tapered: sand & silt

\[P \]
\[R_s = f(\text{adhesion}) \]
\[R_p \approx 0 \]
Piles Classified By Function

– combination friction and end bearing

– uplift/tension piles
 structures that float, towers

– batter piles
 angled, cost more, resist large horizontal loads
Piles Classified By Function

- **fender piles, dolphins, pile clusters**
 - large # of piles in a small area

- **compaction piles**
 - used to densify loose sands

- **drilled piers**
 - eliminate need for pile caps
 - designed for bearing capacity (not slender)
Pile Caps and Grade Beams

– like multiple column footing
– more shear areas to consider