Design

- factors out of the designer’s control
 - loads
 - occurrence
- factors within the designer’s control
 - choice of material
 - “cost” of failure (F.S., probability, location)
 - economic design method
 - analysis method

Design Methods

- different approaches to meeting strength/safety requirements
 - allowable stress design (elastic)
 - ultimate strength design
 - limit state design
 - plastic design
 - load and resistance factor design
- assume a behavior at failure or other threshold and include a margin of safety

Load Types

- D = dead load
- L = live load
- L_r = live roof load
- W = wind load
- S = snow load
- E = earthquake load
- R = rainwater load or ice water load
- T = effect of material & temperature
- H = hydraulic loads from soil (F from fluids)
Dead Loads

- fixed elements
 - structure itself
 - internal partitions
 - hung ceilings
 - all internal and external finishes
 - HVAC ductwork and equipment
 - permanently mounted equipment
- \(F = mg \) (GRAVITY)

Weight of Materials

- for a volume
 - \(W = \gamma V \) where \(\gamma \) is weight/volume
- \(W = \gamma A t \) for an extruded area with height of \(t \)

<table>
<thead>
<tr>
<th>Assembly</th>
<th>(\gamma_{\text{al}})</th>
<th>(\gamma_{\text{w}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floors</td>
<td>6.5</td>
<td>0.31</td>
</tr>
<tr>
<td>Concrete block</td>
<td>20.0</td>
<td>0.30</td>
</tr>
<tr>
<td>Steel deck</td>
<td>45.0</td>
<td>0.30</td>
</tr>
<tr>
<td>Wood</td>
<td>15.0</td>
<td>0.30</td>
</tr>
<tr>
<td>Wood</td>
<td>15.0</td>
<td>0.30</td>
</tr>
<tr>
<td>Ceramic tile</td>
<td>4.0</td>
<td>0.30</td>
</tr>
<tr>
<td>Fireresistant</td>
<td>5.0</td>
<td>0.30</td>
</tr>
<tr>
<td>Timber decking</td>
<td>8.0</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Concentrated Loads

Distributed Loads

- for an area
 - \(w = \gamma A \)
Dynamic Loads

- time, velocity, acceleration
- kinetics
 - forces causing motion
 \[W = m \cdot g \]
 - work
 - conservation of energy

Load Locations

- centric
- eccentric
- bending of flexural load
- torsional load
- combined loading

Load Paths

- tributary areas
- transfer

Live Loads

- occupancy
- movable furniture and equipment
- construction / roof traffic – \(L_r \)
- minimum values
- reduction allowed as area increases
Wind Load
- wind speed
- gusting
- terrain
- windward, leeward, up and down!
- drag
- rocking
- harmonic
- torsion

Snow Load
- latitude
- solar exposure
- wind speed
- roof slope

Seismic Load
- earthquake acceleration
 - \(F = ma \)
 - movement of ground (3D)
 - building mass responds
 - static models often used, \(V \) is static shear
 - building period, \(T \approx 0.1N \), determines \(C \)
 - building resistance – \(R_W \)
 - \(Z \) (zone), \(I \) (importance factor)

\[V = \frac{ZICW}{R_W} \]

Dynamic Response
- Lateral ground motions associated with earthquakes cause inertial forces to develop that are dependent on the weight of the structure. Sliding failures can occur.
- Overturning failures
- Back and forth ground motions can cause different parts of the sculpture to move in different directions. Overturning or cracking of elements can consequently occur.
Dynamic Response

- period of vibration or frequency
 - wave
 - sway/time period
- damping
 - reduction in sway
- resonance
 - amplification of sway

Frequency and Period

- natural period of vibration
 - avoid resonance
 - hard to predict seismic period
 - affected by soil
 - short period
 - high stiffness
 - long period
 - low stiffness

To ring the bell, the sexton must pull on the downswing of the bell in time with the natural frequency of the bell.

Water Load

- rainwater – clogged drains
- ponding
- ice formation

Thermal Load

- stress due to strain
- restrained expansion or contraction
- temperature gradients
- composite construction
Hydraulic Loads

- pressure by water in soil, H
- fluid pressure, F
 - normal to surface
- flood

Building Codes

- documentation
 - laws that deal with planning, design, construction, and use of buildings
 - regulate building construction for
 - fire, structural and health safety
 - cover all aspect of building design
 - references standards
 - acceptable minimum criteria
 - material & structural codes

Building Codes

- occupancy
- construction types
- structural chapters
 - loads, tests, foundations
- structural materials, assemblies
 - roofs
 - concrete
 - masonry
 - steel

Prescribed Loads

- ASCE-7
 - live load (not roof) reductions allowed
- International Building Code
 - occupancy
 - wind: pressure to static load
 - seismic: shear load function of mass and response to acceleration
 - fire resistance
Structural Codes

- prescribe loads and combinations
- prescribe design method
- prescribe stress and deflection limits
- backed by the profession
- may require design to meet performance standards
- related to material or function

Design Methods

- probability of loads and resistance
- material variability
- overload, fracture, fatigue, failure
- allowable stress design
 \[f_{\text{actual}} = \frac{P}{A} \leq f_{\text{allowed}} = \frac{f_{\text{capacity}}}{F.S.} \]
- limit state design
 - design loads & capacities

Allowable Stress Design

- historical method
- a.k.a. working stress, strength design
- stresses stay in ELASTIC range

Figure 5.20 Stress-strain diagram for various materials.

Design Codes

- Wood
 - NDS
- Steel
 - AISC
- Concrete
 - ACI
 - AASHTO
- Masonry
 - MSJC
ASD Load Combinations

- \(D \)
- \(D + L \)
- \(D + 0.75(L_r \text{ or } S \text{ or } R) \)
- \(D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R) \)
- \(D + (0.6W \text{ or } 0.7E) \)
 - \(D + 0.75L + 0.75(0.6W) + 0.75(L_r \text{ or } S \text{ or } R) \)
 - \(D + 0.75L + 0.75(0.7E) + 0.75S \)
- \(0.6D + 0.6W \)
- \(0.6D + 0.7E \)

Limit State Design

- a.k.a. strength design
- stresses go to limit (strain outside elastic range)
- loads may be factored
- resistance or capacity reduced by a factor
- based on material behavior
- “state of the art”

LRFD Load Combinations

- \(1.4D \)
- \(1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R) \)
- \(1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W) \)
- \(1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R) \)
- \(1.2D + 1.0E + L + 0.2S \)
- \(0.9D + 1.0W \)
- \(0.9D + 1.0E \)
 - \(F \) has same factor as \(D \) in 1-5 and 7
 - \(H \) adds with 1.6 and resists with 0.9 (permanent)
Deflection Limits

• based on service condition, severity

<table>
<thead>
<tr>
<th>Use</th>
<th>LL only</th>
<th>DL+LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>L/180</td>
<td>L/120</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaster ceiling</td>
<td>L/240</td>
<td>L/180</td>
</tr>
<tr>
<td>no plaster</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Floor beams:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary Usage</td>
<td>L/360</td>
<td>L/240</td>
</tr>
<tr>
<td>Roof or floor (damageable elements)</td>
<td></td>
<td>L/480</td>
</tr>
</tbody>
</table>

Load Conditions

• loads, patterns & combinations
 – usually uniformly distributed gravity loads
 – worst case for largest moments...
 – wind direction can increase moments

Structural Loads

• gravity acts on mass \(F = m \cdot g \)

• force of mass
 – acts at a point
 • ie. joist on beam
 – acts along a “line”
 • ie. floor on a beam
 – acts over an area
 • ie. people, books, snow on roof or floor

Equivalent Force Systems

• replace forces by resultant
• place resultant where \(M = 0 \)
• using calculus and area centroids
 \[
 W = \int_0^L w(x) \, dx = \int dA_{\text{loading}} = A_{\text{loading}}
 \]
Area Centroids

• **Table 7.1 – pg. 242**

<table>
<thead>
<tr>
<th>Shape</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular area</td>
<td>$\frac{b}{3}$</td>
<td>$\frac{h}{3}$</td>
</tr>
<tr>
<td>Quarter-circular area</td>
<td>$\frac{4r}{3\pi}$</td>
<td>$\frac{4r}{3\pi}$</td>
</tr>
<tr>
<td>Semicircular area</td>
<td>0</td>
<td>$\frac{4r}{3\pi}$</td>
</tr>
<tr>
<td>Semi-parabolic area</td>
<td>$\frac{3a}{8}$</td>
<td>$\frac{3h}{8}$</td>
</tr>
<tr>
<td>Parabolic area</td>
<td>0</td>
<td>$\frac{3h}{8}$</td>
</tr>
</tbody>
</table>

Equivalent Load Areas

• area is width x “height” of load
• w is load per unit length
• W is total load

\[w \cdot x = W \]

\[\begin{align*}
 w & \cdot x = W \\
 \frac{w \cdot x}{2} & = \frac{W}{2}
\end{align*} \]

Distributed Area Loads

• w is also load per unit area

Load Tracing

• how loads are transferred
 – usually starts at top
 – distributed by supports as actions
 – distributed by tributary areas

Figure 2.7 Area-distributed load (pressure) on floor decking.
Load Tracing

• areas see distributed area load
• beams or trusses see distributed line loads
• “collectors” see forces
 – columns
 – supports

Load Tracing

• tributary load
 – think of water flow
 – “concentrates” load of area into center

\[w = \left(\frac{\text{load}}{\text{area}} \right) \times \text{tributary width} \]
Load Tracing

Alamillo Bridge
Calatrava 1992

http://en.structurae.de

Load Path Diagram

Figure 3.12: Alamillo bridge, load path diagram.

Load Tracing 15
Lecture 14
Foundations Structures
ARCH 331
F2008abn

Load Paths

• floors and framing

(a) FBD—decking.

(b) FBD—joists.

(c) FBD—beams.

(d) FBD—girder.

Load Paths

• wall systems

Figure 4.12 Uniform wall load from a slab.

Figure 4.23 Uniform wall load from offsets and joists.

Figure 4.14 Concentrated loads from trusses spread beams.

Load Tracing 16
Lecture 14
Foundations Structures
ARCH 331
F2008abn

Load Paths

• openings & pilasters

Figure 4.15 Arching over wall openings.

Figure 4.36 Stair wall with a window opening.

Figure 4.17 Pilasters supporting concentrated load.

Load Tracing 17
Lecture 14
Foundations Structures
ARCH 331
F2008abn
Load Paths

- foundations

Load Paths

- deep foundations

Spans

- direction
- depth

Levels

- determine span at top level
- find half way to next element
- *include self weight
- look for “collectors”
- repeat
- one:

![Spread footing](image1)
![Wall footing](image2)
![Mat or raft foundation](image3)

![Pile foundations](image4)
![Pile cap on one pile group](image5)
![Grade beam supporting a bearing wall](image6)
Levels

- two:

- three:

Irregular Configurations

- tracing still \(\frac{1}{2} \) each side

Slabs

- edge support

- linear and uniform distribution

Girders and Transfer

- openings
 - no load & no half way

- girder actions at beam supports

Sloped Beams

- stairs & roofs
- projected live load
- dead load over length

- perpendicular load to beam:
 \[w_\perp = w \cdot \cos \alpha \]
- equivalent distributed load:
 \[w_{adj} = \frac{w}{\cos \alpha} \]

Framing Diagrams

- beam lines and “dots”
- breaks & ends

Retaining Walls

- purpose
 - retain soil or other material
- basic parts
 - wall & base
 - additional parts
 - counterfort
 - buttress
 - key

Retaining Wall Types

- “gravity” wall
 - usually unreinforced
 - economical & simple
- cantilever retaining wall
 - common
Retaining Wall Loads

- **gravity**
 \[W = \gamma \times V \]
- **fluid pressure**
 \[p = \omega' \times h \]
 \[P = \frac{1}{2} p \times h \text{ at } h/3 \]
- **friction**
 \[F = \mu \times N \]
- **soil bearing pressure, }**

Retaining Wall Equilibrium

- **sliding - overcome friction?**
- **overturning at toe (o) - overcome mass?**

\[SF = \frac{M_{\text{resist}}}{M_{\text{overturning}}} \geq 1.5 - 2 \]

\[SF = \frac{F_{\text{horizontal-resist}}}{F_{\text{sliding}}} \geq 1.25 - 2 \]

Pressure Distribution

- want resultant of load from pressure inside the middle third of base (kern)
- triangular stress block with }max
- \[x = 1/3 \times \text{width of stress} \]
- equivalent force location:

\[W \times x = \frac{p_{\text{max}}}{3} \times \frac{x}{3} \]

\[p_{\text{max}} = \frac{2W}{3x} = \frac{2W}{a} \text{ when } a \text{ is fully stressed} \]

Wind Pressure

- **distributed load**
- “collected” into }V
- **lateral loads must be resisted**
Bracing Configurations

![Bracing Configurations Diagram]

Figure 4.54 Various shearwall arrangements—some stable, others unstable.