Compression Members (revisited)

- designed for strength & stresses
- designed for serviceability & deflection
- need to design for stability
 - ability to support a specified load without sudden or unacceptable deformations

Effect of Length (revisited)

- long & slender
- short & stubby

Critical Stresses (revisited)

- when a column gets stubby, crushing will limit the load
- real world has loads with eccentricity
Bracing (revisited)

- bracing affects shape of buckle in one direction
- both should be checked!

Wood Columns

- slenderness ratio $= \frac{L}{d_{\text{min}}}$
 - d_{min} = smallest dimension
 - $\frac{l}{d} \leq 50$ (max)

 $f_c = \frac{P}{A} = F'_c$

 - where F'_c is the allowable compressive strength parallel to the grain
 - bracing common
 - posts, round, built-up

Allowable Wood Stress

$$F'_c = F_c \left(C_D \right) \left(C_M \right) \left(C_I \right) \left(C_F \right) \left(C_P \right)$$

- where:
 - F_c = compressive strength parallel to grain
 - C_D = load duration factor
 - C_M = wet service factor (1.0 dry)
 - C_I = temperature factor
 - C_F = size factor
 - C_P = column stability factor

 (Table 10.3)

Strength Factors

- wood properties and load duration, C_D
 - short duration
 - higher loads
 - normal duration
 - > 10 years

 - stability, C_p
 - combination curve - tables

 $F'_c = F_c C_P = \left(F_c C_D \right) C_P$
Procedure for Analysis

1. calculate \(L_e/d_{\text{min}} \)
 - \(KL/d \) each axis, choose largest

2. obtain \(F_c' \)
 - compute \(F_{cE} = \frac{0.822 E'_\text{min}}{C_p E} \left(\frac{l_e}{d} \right)^2 \)
 - \(K_{cE} = 0.3 \) sawn
 - \(K_{cE} = 0.418 \) glu-lam
 - \(E'_\text{min} = E_{\text{min}} (C_M)(C_P)(C_D) \)

3. compute \(F_c = F_c C_D \)

4. calculate \(F_{cE}/F_c' \) and get \(C_p \) (Table 14)

5. calculate \(F_c' = F_c' C_p \)

Procedure for Analysis (cont’d)

6. compute \(P_{\text{allowable}} = F_c' A \)
 - or find \(f_{\text{actual}} = P/A \)

7. is \(P \leq P_{\text{allowable}} \)? (or \(f_{\text{actual}} \leq F_c' \)?)
 - yes: OK
 - no: overstressed & no good
Procedure for Design

1. guess a size (pick a section)
2. calculate L_e/d_{min}
 - KL/d each axis, choose largest
3. obtain F'_c
 - compute $F_{CE} = \frac{0.822E'_{min}}{\left(\frac{le}{d}\right)^2} = \frac{KcE}{\left(\frac{le}{d}\right)^2}$
 - $KcE = 0.3$ sawn
 - $KcE = 0.418$ glu-lam
 - $E'_{min} = E_{min}(C_M)(C_T)(C_i)$
4. compute $F'_c \approx F_cC_D$
5. calculate F_{cE}/F'_c and get C_p (Table 14)

Procedure for Design (cont’d)

6. compute $F'_c = F^*_cC_p$
7. compute $P_{allowable} = F'_c \cdot A$
 - or find $f_{actual} = P/A$
8. is $P \leq P_{allowable}$? (or $f_{actual} \leq F'_c$?)
 - yes: OK
 - no: pick a bigger section and go back to step 2.

Timber Construction by Code

- light-frame
 - light loads
 - 2x’s
 - floor joists – 2x6, 2x8, 2x10, 2x12 typical at spacings of 12”, 16”, 24”
 - normal spans of 20-25 ft or 6-7.5 m
 - plywood spans between joists
 - stud or load-bearing masonry walls
 - limited to around 3 stories – fire safety

Design of Columns with Bending

- satisfy
 - strength
 - stability
- pick
 - section

- Timber frame—column connection, $e = 0.4l = 0.4 \times (6H)$
- Moment connection (rigid frame), M is moment due to beam bending
- Timber frame—column connection, $e = 0.4l = 0.4 \times (6H)$
- Upper chord of a beam—compression plate bending, $M = \frac{(F)x}{A}$
Design
• Wood
\[
\left[\frac{f_c}{F'_{bx}} \right]^2 + \frac{f_{bw}}{F'_{bx} \left(1 - \frac{f_c}{F_{cEx}} \right)} \leq 1.0
\]
[] term – magnification factor for P-Δ

\[F'_{bx} \] – allowable bending strength

Design Steps Knowing Loads
1. assume limiting stress
 • buckling, axial stress, combined stress
2. solve for r, A or S
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Laminated Timber Arches
• two & three hinged arches
• bent to wide range of curves
• bending and compression
• residual stress from laminating, \(C_c \)

Laminated Arch Design
• radius of curvature, \(R \), limited by lam thickness, \(t \)
 – \(R = 100t \) – southern pine & hardwoods
 – \(R = 125t \) – softwood
• \(r = radius \) to inside face of laminations
 • \(C_c = 1 - 2000 \left(\frac{t}{r} \right)^2 \)
 • \(F_{b'} = F_b (C_F C_c) \)