steel construction: columns & tension members

Design Methods (revisited)
- know
 - loads or lengths
- select
 - section or load
 - adequate for strength and no buckling

Structural Steel
- standard rolled shapes (W, C, L, T)
- tubing
- pipe
- built-up

Allowable Stress Design (ASD)
- AICS 9th ed
 \[F_a = \frac{f_{\text{critical}}}{F.S.} = \frac{12\pi^2 E}{23(Kl/r)^2} \]
- slenderness ratio \(\frac{Kl}{r} \)
 - for \(kl/r \geq C_c \)
 \[= 126.1 \text{ with } F_y = 36 \text{ ksi} \]
 \[= 107.0 \text{ with } F_y = 50 \text{ ksi} \]
C_c and Euler’s Formula

- KL/r < C_c
 - short and stubby
 - parabolic transition

- KL/r > C_c
 - Euler’s relationship
 - < 200 preferred

\[C_c = \sqrt{\frac{2\pi^2E}{F_y}} \]

Short / Intermediate

- L_e/r < C_c
 \[F_a = \left[1 - \left(\frac{KL}{r}\right)^2\right] \frac{F_y}{F.S.} \]
 - where
 \[F.S. = \frac{5}{3} + \frac{3(KL/r)}{8C_c} - \frac{(KL/r)^3}{8C_c^3} \]

Unified Design

- limit states for failure
 \[P_a \leq \frac{P_n}{\Phi} \]
 \[\phi_c = 0.90 \quad P_n = F_{cr} A_g \quad P_u \leq \phi_c \frac{P_n}{\Omega} \]

1. yielding \[KL \leq 4.71 \sqrt{\frac{E}{F_y}} \quad \text{or} \quad F_e \geq 0.44F_y \]
2. buckling \[KL > 4.71 \sqrt{\frac{E}{F_y}} \quad \text{or} \quad F_e < 0.44F_y \]

F_e – elastic buckling stress (Euler)
Unified Design

\[P_n = F_{cr}A_g \]

- for \(\frac{KL}{r} \leq 4.71 \)
\[F_{cr} = \frac{E}{F_y} \left(\frac{F_y}{F_e} \right)^{\frac{F_y}{F_e}} \]

- for \(\frac{KL}{r} > 4.71 \)
\[F_{cr} = 0.877F \]

- where \(F_e = \frac{\pi^2 E}{(KL/r)^2} \)

Procedure for Analysis

1. calculate \(KL/r \)
 \- biggest of \(KL/r \) with respect to x axes and y axis

2. find \(F_a \) or \(F_{cr} \) from appropriate equation
 \- tables are available

3. compute \(P_{allowable} = F_a \cdot A \) or \(P_n = F_{cr}A_g \)
 \- or find \(f_{actual} = P/A \)

4. is \(P \leq P_{allowable} \) (or \(P_n \leq \phi P_n \))?
 \- yes: ok
 \- no: insufficient capacity and no good

Procedure for Design

1. guess a size (pick a section)

2. calculate \(KL/r \)
 \- biggest of \(KL/r \) with respect to x axes and y axis

3. find \(F_a \) or \(F_{cr} \) from appropriate equations
 \- or find a chart

4. compute \(P_{allowable} = F_a \cdot A \) (or \(P_n/\Omega = F_{cr}A_g \))
 \- or find \(f_{actual} = P/A \)

Procedure for Design (cont’d)

5. is \(P \leq P_{allowable} \) or \(P_n \leq \phi P_n \)?
 \- yes: ok
 \- no: pick a bigger section and go back to step 2.

6. check design efficiency
 \- percentage of stress = \(\frac{P}{P_c} \cdot 100\% \)
 \- if between 90-100%: good
 \- if < 90%: pick a smaller section and go back to step 2.
Column Charts, F_a (pg. 361-364)

Table 10.1 Allowable stress for compression members ($F_y = 36$ ksi and $F_y = 250$ MPa).

<table>
<thead>
<tr>
<th>KL</th>
<th>F_a (ksi)</th>
<th>F_a (MPa)</th>
<th>KL</th>
<th>F_a (ksi)</th>
<th>F_a (MPa)</th>
<th>KL</th>
<th>F_a (ksi)</th>
<th>F_a (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.56</td>
<td>148.7</td>
<td>41</td>
<td>19.11</td>
<td>131.8</td>
<td>81</td>
<td>15.24</td>
<td>105.1</td>
</tr>
<tr>
<td>2</td>
<td>21.52</td>
<td>148.4</td>
<td>42</td>
<td>19.03</td>
<td>131.2</td>
<td>82</td>
<td>15.13</td>
<td>104.3</td>
</tr>
<tr>
<td>3</td>
<td>21.48</td>
<td>148.1</td>
<td>43</td>
<td>18.95</td>
<td>130.7</td>
<td>83</td>
<td>15.02</td>
<td>105.6</td>
</tr>
<tr>
<td>4</td>
<td>21.44</td>
<td>147.8</td>
<td>44</td>
<td>18.86</td>
<td>130.0</td>
<td>84</td>
<td>14.90</td>
<td>102.7</td>
</tr>
<tr>
<td>5</td>
<td>21.39</td>
<td>147.5</td>
<td>45</td>
<td>18.78</td>
<td>129.5</td>
<td>85</td>
<td>14.79</td>
<td>101.5</td>
</tr>
<tr>
<td>6</td>
<td>21.35</td>
<td>147.2</td>
<td>46</td>
<td>18.70</td>
<td>128.9</td>
<td>86</td>
<td>14.67</td>
<td>101.1</td>
</tr>
<tr>
<td>7</td>
<td>21.30</td>
<td>146.9</td>
<td>47</td>
<td>18.61</td>
<td>128.3</td>
<td>87</td>
<td>14.56</td>
<td>100.4</td>
</tr>
<tr>
<td>8</td>
<td>21.25</td>
<td>146.5</td>
<td>48</td>
<td>18.53</td>
<td>127.8</td>
<td>88</td>
<td>14.44</td>
<td>99.6</td>
</tr>
<tr>
<td>9</td>
<td>21.21</td>
<td>146.2</td>
<td>49</td>
<td>18.44</td>
<td>127.1</td>
<td>89</td>
<td>14.32</td>
<td>98.7</td>
</tr>
<tr>
<td>10</td>
<td>21.16</td>
<td>145.9</td>
<td>50</td>
<td>18.35</td>
<td>126.5</td>
<td>90</td>
<td>14.20</td>
<td>97.9</td>
</tr>
<tr>
<td>11</td>
<td>21.10</td>
<td>145.5</td>
<td>51</td>
<td>18.26</td>
<td>125.9</td>
<td>91</td>
<td>14.09</td>
<td>97.2</td>
</tr>
<tr>
<td>12</td>
<td>21.05</td>
<td>145.1</td>
<td>52</td>
<td>18.17</td>
<td>125.3</td>
<td>92</td>
<td>13.97</td>
<td>96.3</td>
</tr>
<tr>
<td>13</td>
<td>21.00</td>
<td>144.8</td>
<td>53</td>
<td>18.08</td>
<td>124.7</td>
<td>93</td>
<td>13.84</td>
<td>95.4</td>
</tr>
<tr>
<td>14</td>
<td>20.95</td>
<td>144.5</td>
<td>54</td>
<td>17.99</td>
<td>124.0</td>
<td>94</td>
<td>13.72</td>
<td>94.6</td>
</tr>
<tr>
<td>15</td>
<td>20.89</td>
<td>144.0</td>
<td>55</td>
<td>17.90</td>
<td>123.4</td>
<td>95</td>
<td>13.60</td>
<td>93.8</td>
</tr>
<tr>
<td>16</td>
<td>20.83</td>
<td>143.6</td>
<td>56</td>
<td>17.81</td>
<td>122.8</td>
<td>96</td>
<td>13.48</td>
<td>92.9</td>
</tr>
<tr>
<td>17</td>
<td>20.78</td>
<td>143.3</td>
<td>57</td>
<td>17.71</td>
<td>122.1</td>
<td>97</td>
<td>13.35</td>
<td>92.0</td>
</tr>
<tr>
<td>18</td>
<td>20.72</td>
<td>142.9</td>
<td>58</td>
<td>17.62</td>
<td>121.5</td>
<td>98</td>
<td>13.23</td>
<td>91.2</td>
</tr>
</tbody>
</table>

Column Charts, ϕF_{cr}

Available Critical Stress, ϕF_{cr}, for Compression Members, ksi ($F_y = 50$ ksi and $\phi = 0.90$)

<table>
<thead>
<tr>
<th>KL</th>
<th>ϕF_{cr}</th>
<th>KL</th>
<th>ϕF_{cr}</th>
<th>KL</th>
<th>ϕF_{cr}</th>
<th>KL</th>
<th>ϕF_{cr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.0</td>
<td>41</td>
<td>30.0</td>
<td>61</td>
<td>27.0</td>
<td>121</td>
<td>15.4</td>
</tr>
<tr>
<td>2</td>
<td>45.0</td>
<td>42</td>
<td>30.6</td>
<td>62</td>
<td>27.5</td>
<td>122</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td>45.0</td>
<td>43</td>
<td>30.3</td>
<td>63</td>
<td>27.2</td>
<td>123</td>
<td>14.9</td>
</tr>
<tr>
<td>4</td>
<td>44.9</td>
<td>44</td>
<td>30.1</td>
<td>64</td>
<td>27.1</td>
<td>124</td>
<td>14.7</td>
</tr>
<tr>
<td>5</td>
<td>44.9</td>
<td>45</td>
<td>30.8</td>
<td>65</td>
<td>27.5</td>
<td>125</td>
<td>14.5</td>
</tr>
<tr>
<td>6</td>
<td>44.9</td>
<td>46</td>
<td>30.5</td>
<td>66</td>
<td>27.2</td>
<td>126</td>
<td>14.2</td>
</tr>
<tr>
<td>7</td>
<td>44.8</td>
<td>47</td>
<td>30.3</td>
<td>67</td>
<td>27.9</td>
<td>127</td>
<td>14.0</td>
</tr>
<tr>
<td>8</td>
<td>44.8</td>
<td>48</td>
<td>29.9</td>
<td>68</td>
<td>27.5</td>
<td>128</td>
<td>13.6</td>
</tr>
<tr>
<td>9</td>
<td>44.7</td>
<td>49</td>
<td>29.6</td>
<td>69</td>
<td>27.0</td>
<td>129</td>
<td>13.3</td>
</tr>
<tr>
<td>10</td>
<td>44.7</td>
<td>50</td>
<td>29.3</td>
<td>70</td>
<td>26.5</td>
<td>130</td>
<td>13.0</td>
</tr>
<tr>
<td>11</td>
<td>44.6</td>
<td>51</td>
<td>29.0</td>
<td>71</td>
<td>26.1</td>
<td>131</td>
<td>12.7</td>
</tr>
<tr>
<td>12</td>
<td>44.5</td>
<td>52</td>
<td>28.7</td>
<td>72</td>
<td>25.7</td>
<td>132</td>
<td>12.4</td>
</tr>
<tr>
<td>13</td>
<td>44.4</td>
<td>53</td>
<td>28.4</td>
<td>73</td>
<td>25.3</td>
<td>133</td>
<td>12.1</td>
</tr>
<tr>
<td>14</td>
<td>44.4</td>
<td>54</td>
<td>28.1</td>
<td>74</td>
<td>25.0</td>
<td>134</td>
<td>11.8</td>
</tr>
<tr>
<td>15</td>
<td>44.3</td>
<td>55</td>
<td>27.8</td>
<td>75</td>
<td>24.7</td>
<td>135</td>
<td>11.5</td>
</tr>
<tr>
<td>16</td>
<td>44.2</td>
<td>56</td>
<td>27.5</td>
<td>76</td>
<td>24.4</td>
<td>136</td>
<td>11.2</td>
</tr>
<tr>
<td>17</td>
<td>44.2</td>
<td>57</td>
<td>27.2</td>
<td>77</td>
<td>24.1</td>
<td>137</td>
<td>10.9</td>
</tr>
<tr>
<td>18</td>
<td>44.1</td>
<td>58</td>
<td>26.9</td>
<td>78</td>
<td>23.8</td>
<td>138</td>
<td>10.6</td>
</tr>
<tr>
<td>19</td>
<td>44.1</td>
<td>59</td>
<td>26.6</td>
<td>79</td>
<td>23.5</td>
<td>139</td>
<td>10.3</td>
</tr>
<tr>
<td>20</td>
<td>44.0</td>
<td>60</td>
<td>26.3</td>
<td>80</td>
<td>23.2</td>
<td>140</td>
<td>10.0</td>
</tr>
<tr>
<td>21</td>
<td>44.0</td>
<td>61</td>
<td>26.0</td>
<td>81</td>
<td>22.9</td>
<td>141</td>
<td>9.7</td>
</tr>
<tr>
<td>22</td>
<td>43.9</td>
<td>62</td>
<td>25.7</td>
<td>82</td>
<td>22.6</td>
<td>142</td>
<td>9.4</td>
</tr>
<tr>
<td>23</td>
<td>43.8</td>
<td>63</td>
<td>25.4</td>
<td>83</td>
<td>22.3</td>
<td>143</td>
<td>9.1</td>
</tr>
<tr>
<td>24</td>
<td>43.7</td>
<td>64</td>
<td>25.1</td>
<td>84</td>
<td>22.0</td>
<td>144</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Beam-Column Design

• moment magnification ($P - \Delta$)

$$M_u = B_1 M_{\text{max}} - \text{factored} \quad B_1 = \frac{C_m}{1 - (P_u / P_{el})}$$

C_m – modification factor for end conditions

$= 0.6 - 0.4(M_1/M_2)$ or

0.85 restrained, 1.00 unrestrained

P_{el} – Euler buckling strength

$P_{el} = \frac{\pi^2 EA}{(Kl/r)^2}$
Beam-Column Design

- LRFD (Unified) Steel
 - for \(\frac{P_r}{P_c} \geq 0.2 \):
 \[
 \frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0
 \]
 - for \(\frac{P_r}{P_c} < 0.2 \):
 \[
 \frac{P_u}{2 \phi_c P_n} + \frac{8}{9} \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}} \right) \leq 1.0
 \]

\(P_r \) is required, \(P_c \) is capacity
\(\phi_c \) - resistance factor for compression = 0.9
\(\phi_b \) - resistance factor for bending = 0.9

Design Steps Knowing Loads (revisited)

1. assume limiting stress
 - buckling, axial stress, combined stress
2. solve for \(r, A \) or \(S \)
3. pick trial section
4. analyze stresses
5. section ok?
6. stop when section is ok

Rigid Frame Design (revisited)

- columns in frames
 - ends can be “flexible”
 - stiffness affected by beams and column = \(EI/L \)

\[
G = \Psi = \frac{\sum EI}{l_c} \quad \frac{\sum EI}{l_b}
\]

- for the joint
 - \(l_c \) is the column length of each column
 - \(l_b \) is the beam length of each beam
 - measured center to center

Rigid Frame Design (revisited)

- column effective length, \(k \)
Tension Members

- steel members can have holes
- reduced area
 \[A_n = A_g - A_{of\ all\ holes} + t\sum_{4g} s \]
- increased stress

Effective Net Area

- likely path to “rip” across
- bolts divide transferred force too
- shear lag \[A_e \leq A_n U \]

Tension Members

- limit states for failure
 \[P_a \leq \frac{P_n}{\Omega} \quad P_u \leq \phi_t P_n \]
- yielding \[\phi_t = 0.90 \quad P_n = F_y A_g \]
- rupture* \[\phi_t = 0.75 \quad P_n = F_u A_e \]

\(A_g \) - gross area
\(A_e \) - effective net area
(holes 1/8" + d)
\(F_u \) = the tensile strength of the steel (ultimate)

\(P_u \) = the ultimate load capacity of the member
\(P_n \) = the nominal load capacity of the member
\(\Omega\) = a constant (usually 3.0)
\(P_a \) = the applied load
\(F_y \) = the yield stress of the steel
\(F_u \) = the ultimate tensile strength of the steel
\(t \) = thickness of the member
\(s \) = the distance between holes
\(A_{of\ all\ holes} \) = area of all holes

(AISC - Steel Structures of the Everyday)