Connections

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

Connections in steel structures:

- needed to:
 - support beams by columns
 - connect truss members
 - splice beams or columns
- transfer load
- subjected to
 - tension or compression
 - shear
 - bending

Bolts

- bolted steel connections

Welds

- welded steel connections
Bolts

- types
 - materials
 - high strength
 - A307, A325, A490
- location of threads
 - included - N
 - excluded - X
- friction or bearing (SC)
 - always tightened

Bolted Connection Design

- considerations
 - bearing stress
 - yielding
 - shear stress
 - single & double
 - member
 - rupture

Bolts

- rarely fail in bearing
- holes considered 1/8” larger
- shear & tension
 \[R_a \leq \frac{R_n}{\phi_v} \]
 \[R_u \leq \phi_v R_n \]
 - single shear or tension \(\phi_v = 0.75 \)
 - double shear
 \[R_n = F_n A_p \]
 \[R_n = F_n 2A_p \]
Bolts

- bearing
 \[R_a \leq \frac{R_n}{\Omega} \quad R_u \leq \phi R_n \]
 \[\phi = 0.75 \]
 - deformation is concern
 \[R_n = 1.2 L_c t F_u \leq 2.4 dt F_u \]
 - deformation isn’t concern
 \[R_n = 1.5 L_c t F_u \leq 3.0 dt F_u \]
 - long slotted holes
 \[R_n = 1.0 L_c t F_u \leq 2.0 dt F_u \]
 \[L_c - \text{clear length to edge or next hole (ex. 1\frac{1}{4}'', 3'')} \]

Welded Connection Design

- considerations
 - shear stress
 - yielding
 - rupture

Welded Connection Design

- weld terms
 - butt weld
 - fillet weld
 - plug weld
 - throat
 - field welding
 - shop welding
Welded Connection Design

- **weld process**
 - melting of material
 - melted filler - electrode
 - shielding gas / flux
 - potential defects

- **weld materials**
 - E60XX
 - E70XX
 - $F_{EXX} = 70$ ksi

Welded Connection Design

- **shear failure assumed**
- **throat**
 - $T = 0.707 \times$ weld size
- **area**
 - $A = T \times$ length of weld
- **weld metal generally stronger than base metal** (ex. $F_y = 50$ ksi)

Welded Connection Design

- **minimum**
 - table

- **maximum**
 - material thickness (to $\frac{1}{4}"$)
 - $1/16"$ less

- **min. length**
 - $4 \times$ size min.
 - $\geq 1 \frac{1}{2}"$

Welded Connection Design

<table>
<thead>
<tr>
<th>TABLE J2.4</th>
<th>Minimum Size of Fillet Welds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Thickness of Thicker Part Joined, in. (mm)</td>
<td>Minimum Size of Weld, in. (mm)</td>
</tr>
<tr>
<td>$\frac{3}{16}$ (5)</td>
<td>$a (8)$</td>
</tr>
<tr>
<td>$\frac{1}{4}$ (6)</td>
<td>$a (8)$</td>
</tr>
<tr>
<td>$\frac{5}{32}$ (4)</td>
<td>$a (8)$</td>
</tr>
</tbody>
</table>

- a See Section 2.2 for maximum size of fillet welds.

Welded Connection Design

- **shear**
 - $R_u \leq \frac{R_n}{\Omega}$
 - $R_u \leq \phi R_n$
 - $\phi = 0.75$

 $R_n = 0.6 F_{EXX} Tl = S_l$

 - table for ϕS

Welded Connection Design
Framed Beam Connections

- angles
 - bolted
 - welded

Framed Beam Connections

- terms
 - coping

Framed Beam Connections

- tables for standard bolt sizes & spacings
- # bolts
- bolt diameter, angle leg thickness
- bearing on beam web

(AISC - Steel Structures of the Everyday)
Framed Beam Connections

• welded moment example

(AISC - Steel Structures of the Everyday)

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Framed Beam Connections

• welded/bolted moment example

(AISC - Steel Structures of the Everyday)

Beam Connections

• LRFD provisions
 – shear yielding
 – shear rupture
 – block shear rupture
 – tension yielding
 – tension rupture
 – local web buckling
 – lateral torsional buckling
Beam Connections

\[R_n = 0.6 F_u A_{nv} + U_{bs} F_u A_{nt} \leq 0.6 F_u A_{gv} + U_{bs} F_u A_{nt} \]

- where \(U_{bs} \) is 1 for uniform tensile stress

Other Connections

- seated beam
- continuous
 - beam to column
 - beam to beam

Other Connections

- splices

- rigid frame knees
- gussets & joints

Figure 5-1: Black Shear Hinge; Load State (Image by J.A. Strefler and R. Fare, courtesy of Georgia Institute of Technology)

Figure 5-14: Beam to Column Joint State (Image by A.J. Ingleson and B. Jost, courtesy of Georgia Institute of Technology)

The Royal Ontario Museum: Toronto, Canada

(AISC - Steel Structures of the Everyday)

Steel Bolts & Welding 25

Lecture 18

Su2011abn

Steel Bolts & Welding 26

Lecture 21

ARCH 331

Steel Bolts & Welding 28

Lecture 21

ARCH 331

F2008abn
Other Connections

• base plates
 – anchor bolts
 – bearing on steel
 – bending of plate