Structural Math

- quantify environmental loads
 - how big is it?
- evaluate geometry and angles
 - where is it?
 - what is the scale?
 - what is the size in a particular direction?
- quantify what happens in the structure
 - how big are the internal forces?
 - how big should the beam be?

Physics for Structures

- measures
 - US customary & SI

<table>
<thead>
<tr>
<th>Units</th>
<th>US</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>in, ft, mi</td>
<td>mm, cm, m</td>
</tr>
<tr>
<td>Volume</td>
<td>gallon</td>
<td>liter</td>
</tr>
<tr>
<td>Mass</td>
<td>lb mass</td>
<td>g, kg</td>
</tr>
<tr>
<td>Force</td>
<td>lb force</td>
<td>N, kN</td>
</tr>
<tr>
<td>Temperature</td>
<td>F</td>
<td>C</td>
</tr>
</tbody>
</table>
Physics for Structures

- **Scalars** – any quantity
- **Vectors** - quantities with direction
 - like displacements
 - summation results in the “straight line path” from start to end
 - normal vector is perpendicular to something

Language

- **Symbols for operations**: +, -, /, x
- **Symbols for relationships**: (), =, <, >
- **Algorithms**
 - cancellation
 - factors
 - signs
 - ratios and proportions
 - power of a number
 - conversions, ex. $1X = 10Y$
 - operations on both sides of equality

$$\frac{2 \times 5}{6} = \frac{2}{6} = \frac{2 \times 3}{3} = 1$$
$$\frac{x}{6} = \frac{1}{3}$$

$$10^3 = 1000$$

$$\frac{10Y}{1X} or \frac{1X}{10Y} = 1$$

On-line Practice

- **eCampus / Study Aids**

Geometry

- **Angles**
 - right $= 90^\circ$
 - acute $< 90^\circ$
 - obtuse $> 90^\circ$
 - $\pi = 180^\circ$

- **Triangles**
 - area $= \frac{b \times h}{2}$
 - hypotenuse
 - total of angles $= 180^\circ$

$$AB^2 + AC^2 = BC^2$$
Geometry

- lines and relation to angles
 - parallel lines can’t intersect
 - perpendicular lines cross at 90°
 - intersection of two lines is a point
 - opposite angles are equal when two lines cross

- sides of two angles are parallel and intersect opposite way, the angles are supplementary - the sum is 180°
- two angles that sum to 90° are said to be complimentary

Forces & Moments

- intersection of a line with parallel lines results in identical angles
- two lines intersect in the same way, the angles are identical
- intersection of a line with parallel lines results in identical angles
- two lines intersect in the same way, the angles are identical
Geometry

- similar triangles have proportional sides

\[
\frac{AB}{AD} = \frac{AC}{AE} = \frac{BC}{DE}
\]

\[
\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}
\]

Trigonometry

- for right triangles

\[
\sin \alpha = \frac{AB}{CB} = \frac{\text{opposite side}}{\text{hypotenuse}}
\]

\[
\cos \alpha = \frac{AC}{CB} = \frac{\text{adjacent side}}{\text{hypotenuse}}
\]

\[
\tan \alpha = \frac{AB}{AC} = \frac{\text{opposite side}}{\text{adjacent side}}
\]

SOHCAHTOA

Trigonometry

- cartesian coordinate system
 - origin at 0,0
 - coordinates in (x,y) pairs
 - x & y have signs

Trigonometry

- for angles starting at positive x
 - sin is y side
 - cos is x side

\sin<0 for 180-360°
\cos<0 for 90-270°
\tan<0 for 90-180°
\tan<0 for 270-360°
Trigonometry

• cartesian coordinate system
 – origin at 0,0
 – coordinates in (x,y) pairs
 – x & y have signs

Quadrant I
Quadrant II
Quadrant III
Quadrant IV

Trigonometry

• for angles starting at positive x
 – sin is y side
 – cos is x side

sin<0 for 180-360°
cos<0 for 90-270°
tan<0 for 90-180°
tan<0 for 270-360°

Algebra

• equations (something = something)
• constants
 – real numbers or shown with a, b, c...
• unknown terms, variables
 – names like R, F, x, y
• linear equations
 – unknown terms have no exponents
• simultaneous equations
 – variable set satisfies all equations

Trigonometry

• for all triangles
 – sides A, B & C are opposite angles α, β & γ

– LAW of SINES
 \[
 \frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}
 \]

– LAW of COSINES
 \[
 A^2 = B^2 + C^2 - 2BC \cos \alpha
 \]
Algebra

• solving one equation
 – only works with one variable
 – ex: \(2x - 1 = 0\)
 • add to both sides \(2x - 1 + 1 = 0 + 1\)
 \[2x = 1\]
 • divide both sides \[\frac{2x}{2} = \frac{1}{2}\]
 \[x = \frac{1}{2}\]

• solving two equations
 – only works with two variables
 – ex: \(2x + 3y = 8\)
 • look for term similarity \(12x - 3y = 6\)
 • can we add or subtract to eliminate one term?
 • add \(2x + 3y + 12x - 3y = 8 + 6\)
 \[14x = 14\]
 • get x by itself on a side \[\frac{14x}{14} = \frac{14}{14} = x = 1\]

Algebra

• solving one equations
 – only works with one variable
 – ex: \(2x - 1 = 4x + 5\)
 • subtract from both sides \(2x - 1 - 2x = 4x + 5 - 2x\)
 \[2x - 1 - 2x = 4x + 5 - 2x\]
 • subtract from both sides \(-1 - 5 = 2x + 5 - 5\)
 \[-1 - 5 = 2x + 5 - 5\]
 • divide both sides \[\frac{-6}{2} = \frac{-3 \cdot 2}{2} = \frac{2x}{2}\]
 \[\frac{-6}{2} = \frac{-3 \cdot 2}{2} = \frac{2x}{2}\]
 • get x by itself on a side \[x = -3\]

Forces

• statics
 – physics of forces and reactions on bodies and systems
 – equilibrium (bodies at rest)

• forces
 – something that exerts on an object:
 • motion
 • tension
 • compression
Force

- “action of one body on another that affects the state of motion or rest of the body”
- Newton’s 3rd law:
 - for every force of action there is an equal and opposite reaction along the same line

Force Characteristics

- applied at a point
- magnitude
 - Imperial units: lb, k (kips)
 - SI units: N (newtons), kN
- direction

Forces on Rigid Bodies

- for statics, the bodies are ideally rigid
- can translate and rotate
- internal forces are
 - in bodies
 - between bodies (connections)
- external forces act on bodies

Transmissibility

- the force stays on the same line of action
- truck can’t tell the difference
- only valid for EXTERNAL forces
Force System Types

- **collinear**

 ![Collinear forces diagram](https://via.placeholder.com/150)

 Collinear—All forces acting along the same straight line.

- **coplanar**

 ![Coplanar forces diagram](https://via.placeholder.com/150)

 Coplanar—all forces are parallel and act in the same plane.

- **space**

 ![Space forces diagram](https://via.placeholder.com/150)

 Noncoplanar, concurrent—all forces act on a common point but do not all lie in the same plane.

 Noncoplanar, nonconcurrent—all forces act on different points.

Adding Vectors

- **graphically**

 - parallelogram law
 - diagonal
 - long for 3 or more vectors

 - tip-to-tail
 - more convenient with lots of vectors
Force Components

- convenient to resolve into 2 vectors
- at right angles
- in a “nice” coordinate system
- \(\theta \) is between \(F_x \) and \(F \) from \(F_x \)

\[
F_x = F \cos \theta \\
F_y = F \sin \theta \\
F = \sqrt{F_x^2 + F_y^2} \\
\tan \theta = \frac{F_y}{F_x}
\]

Trigonometry

- \(F_x \) is negative
 - 90\(^\circ\) to 270\(^\circ\)
- \(F_y \) is negative
 - 180\(^\circ\) to 360\(^\circ\)
- \(\tan \) is positive
 - quads I & III
- \(\tan \) is negative
 - quads II & IV

Component Addition

- find all x components
- find all y components
- find sum of x components, \(R_x \) (resultant)
- find sum of y components, \(R_y \)

\[
R = \sqrt{R_x^2 + R_y^2} \\
\tan \theta = \frac{R_y}{R_x}
\]

Alternative Trig for Components

- doesn’t relate angle to axis direction
- \(\phi \) is “small” angle between \(F \) and EITHER \(F_x \) or \(F_y \)
- no sign out of calculator!
- have to choose RIGHT trig function, resulting direction (sign) and component axis
Friction
• resistance to movement
• contact surfaces determine \(\mu \)
• proportion of normal force (\(\perp \))
 – opposite to slide direction
 – static > kinetic

\[F = \mu N \]

Cables
• simple
• uses
 – suspension bridges
 – roof structures
 – transmission lines
 – guy wires, etc.
• have same tension all along
• can’t stand compression

Cables Structures
• use high-strength steel
• need
 – towers
 – anchors
• don’t want movement

Cable Structures

http://nisee.berkeley.edu/godden

http://nisee.berkeley.edu/godden
Cable Loads

- straight line between forces
- with one force
 - concurrent
 - symmetric

Cable-Stayed Structures

- diagonal cables support horizontal spans
- typically symmetrical
- Patcenter, Rogers 1986

Patcenter, Rogers 1986

- column free space
- roof suspended
- solid steel ties
- steel frame supports masts
Patcenter, Rogers 1986

- dashes – cables pulling

![Patcenter, load path diagram.](image)

Moments

- forces have the tendency to make a body rotate about an axis

- same translation but different rotation

Moments

- a force acting at a different point causes a different moment:
Moments

- defined by magnitude and direction
- units: N·m, k·ft
- direction: + ccw (right hand rule)
 - cw
- value found from F and \perp distance

\[M = F \cdot d \]

- d also called “lever” or “moment” arm

Moments

- with same F:

\[M_A = F \cdot d_1 < M_A = F \cdot d_2 \]

(bigger)

Moments

- additive with sign convention
- can still move the force along the line of action

Varignon’s Theorem

- resolve a force into components at a point and finding perpendicular distances
- calculate sum of moments
- equivalent to original moment

- makes life easier!
- geometry
- when component runs through point, $d=0$
Moments of a Force

- moments of a force
 - introduced in Physics as “Torque Acting on a Particle”
 - and used to satisfy rotational equilibrium

Physics and Moments of a Force

- my Physics book:

Moment Couples

- 2 forces
 - same size
 - opposite direction
 - distance d apart
 - cw or ccw

 \[M = F \cdot d \]

- not dependant on point of application

 \[M = F \cdot d_1 - F \cdot d_2 \]
Moment Couples

• added just like moments caused by one force
• can replace two couples with a single couple

Equivalent Force Systems

• two forces at a point is equivalent to the resultant at a point
• resultant is equivalent to two components at a point
• resultant of equal & opposite forces at a point is zero
• put equal & opposite forces at a point (sum to 0)
• transmission of a force along action line

Moment Couples

• moment couples in structures

Force-Moment Systems

• single force causing a moment can be replaced by the same force at a different point by providing the moment that force caused
• moments are shown as arched arrows
Force-Moment Systems

- A force-moment pair can be replaced by a force at another point causing the original moment.

Parallel Force Systems

- Forces are in the same direction.
- Can find resultant force.
- Need to find location for equivalent moments.